Optimization of the adsorption of a textile dye onto nanoclay using a central composite design

The main aim of this study was to evaluate the efficacy of montmorillonite clay for the adsorption of C.I. Basic Yellow 2 (BY2) dye from aqueous media. The experimental results were processed by response surface methodology based on a central composite design (CCD). The effect of four main variables, including initial BY2 concentration, adsorbent dosage, reaction time, and temperature on the removal of BY2 was evaluated by the model. The accuracy of the model and regression coefficients was appraised by employing analysis of variance. The results demonstrated a good agreement between the predicted values obtained by the model and the experimental values (R$^{2\, }$= 0.972). Accordingly, the maximum BY2 removal of 97.32% was achieved with an initial BY2 concentration of 60 mg/L, adsorbent dosage of 0.6 g/L, reaction time of 10 min, and initial temperature of 25 $^{\circ}$C. The results demonstrated the high efficiency of montmorillonite clay for the adsorption of BY2 dye from aqueous solution based on the data processed by CCD approach. The adsorbent dosage was found to be the key factor that controlled dye adsorption. The adsorption kinetic and isotherm were also investigated. The rate of adsorption showed the best fit with the pseudo-second order model (R$^{2}$ = 1). The results of the isotherm study fit the Freundlich model (R$^{2} >$ 0.9). The physicochemical properties of the sample were determined by XRF, XRD, FT-IR, and N$_{2}$ adsorption--desorption.

Optimization of the adsorption of a textile dye onto nanoclay using a central composite design

The main aim of this study was to evaluate the efficacy of montmorillonite clay for the adsorption of C.I. Basic Yellow 2 (BY2) dye from aqueous media. The experimental results were processed by response surface methodology based on a central composite design (CCD). The effect of four main variables, including initial BY2 concentration, adsorbent dosage, reaction time, and temperature on the removal of BY2 was evaluated by the model. The accuracy of the model and regression coefficients was appraised by employing analysis of variance. The results demonstrated a good agreement between the predicted values obtained by the model and the experimental values (R$^{2\, }$= 0.972). Accordingly, the maximum BY2 removal of 97.32% was achieved with an initial BY2 concentration of 60 mg/L, adsorbent dosage of 0.6 g/L, reaction time of 10 min, and initial temperature of 25 $^{\circ}$C. The results demonstrated the high efficiency of montmorillonite clay for the adsorption of BY2 dye from aqueous solution based on the data processed by CCD approach. The adsorbent dosage was found to be the key factor that controlled dye adsorption. The adsorption kinetic and isotherm were also investigated. The rate of adsorption showed the best fit with the pseudo-second order model (R$^{2}$ = 1). The results of the isotherm study fit the Freundlich model (R$^{2} >$ 0.9). The physicochemical properties of the sample were determined by XRF, XRD, FT-IR, and N$_{2}$ adsorption--desorption.

___

  • Noorimotlagh, Z.; Darvishi Cheshmeh Soltani, R.; Khataee, A. R.; Shahriyar, S.; Nourmoradi, H. J. Taiwan Inst.
  • Chem. Eng. 2014, 45, 1783–1791.
  • Khataee, A. R.; Fathinia, M.; Aber, S.; Zarei, M. J. Hazard. Mater. 2010, 181, 886–897.
  • G¨urses, A.; Do˘gar, C¸ .; Yal¸cın, M.; A¸cıkyıldız, M.; Bayrak, R.; Karaca, S. J. Hazard. Mater. 2006, 131, 217–228.
  • Darvishi Cheshmeh Soltani, R.; Khataee, A. R.; Safari, M.; Joo, S. W. Int. Biodeter. Biodegr. 2013, 85, 383–391.
  • Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Shams Khorramabadi, G.; Yaghmaeian, K. Water Sci. Technol. 2011, 63, 129–135.
  • Shams Khorramabadi, G.; Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Khataee, A. R.; Jonidi Jafari, A. Can. J.
  • Chem. Eng. 2012, 90, 1539–1546.
  • Uzun, ˙I.; G¨uzel, F. Turk. J. Chem. 2000, 24, 291–298.
  • Qadeer, R.; Rehan, A. H. Turk. J. Chem. 2002, 26, 357–362.
  • G¨urses, A.; Do˘gar, C¸ .; Karaca, S.; A¸cikyildiz, M.; Bayrak, R. J. Hazard. Mater. 2006, 131, 254–259. 10.Darvishi Cheshmeh Soltani, R.; Khataee, A. R.; Godini, H.; Safari, M.; Ghanadzadeh, M. J.; Rajaei, M. S. Desalin.
  • Water Treat. 2014, 1–14. 11.G¨urses, A.; Karaca, S.; A¸cikyildiz, M.; Ejder, M. Chem. Eng. J. 2009, 147, 194–201.
  • Teng, M.-Y.; Lin, S.-H. Desalination 2006, 201, 71–81.
  • Wibulswas, R. Sep. Purif. Technol. 2004, 39, 3–12.
  • Wang, L.; Wang, A. J. Hazard. Mater. 2008, 160, 173–180. 15.Selvam, P. P.; Preethi, S.; Basakaralingam, P.; Thinakaran, N.; Sivasamy, A.; Sivanesan, S. J. Hazard. Mater. 2008, 155, 39–44.
  • Wang, C.-C.; Juang, L.-C.; Hsu, T.-C.; Lee, C.-K.; Lee, J.-F.; Huang, F.-C. J. Colloid Interface Sci. 2004, 273, 80–86.
  • Hassani, A.; Darvishi Cheshmeh Soltani, R.; Karaca, S.; Khataee, A. J. Ind. Eng. Chem. 2015, 21, 1197–1207.
  • W.; Unger, K. K. Stud. Surf. Sci. Catal. 1994, 87, 1–9. 23.Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure
  • Appl. Chem. 1985, 57, 603–619. 24.Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. In
  • Handbook of Heterogeneous Catalysis, Vol. 2 ; 2nd ed.; Ertl, G., Kn¨ozinger, H., Sch¨uth, F., Weitkamp, J., Eds.
  • Wu, Z.; Joo, H.; Ahn, I.-S.; Haam, S.; Kim, J.-H.; Lee, K. Chem. Eng. J. 2004, 102, 277–282. 33.Al-Ghouti, M. A.; Al-Degs, Y. S. Chem. Eng. J. 2011, 173, 115–128. ¨
  • Ozt¨urk, A.; Malkoc, E. Appl. Surf. Sci. 2014, 299, 105–115.
  • Khataee, A. R.; Zarei, M.; Moradkhannejhad, L. Desalination 2010, 258, 112–119.
  • Haber, A.; Runyun, R. General Statistics; 3rd edn. Boston, MA, USA: Addison-Wesley, 1977.
  • Khataee, A. R.; Zarei, M.; Asl, S. K. J. Electroanal. Chem. 2010, 648, 143–150. 38.Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Godini, H.; Khataee, A. R.; Hasanbeiki, A. Chem. Ecol. 2012, 29, 72–85. 39.Khataee, A. R.; Kasiri, M. B.; Alidokht, L. Environ. Technol. 2011, 32, 1669–1684.
  • Deniz, F.; Saygideger, S. D. Desalination 2010, 262, 161–165.
  • Zhou, C.-H.; Zhang, D.; Tong, D.-S.; Wu, L.-M.; Yu, W.-H.; Ismadji, S. Chem. Eng. J. 2012, 209, 223–234.
  • Ghorbani, F.; Younesi, H.; Ghasempouri, S. M.; Zinatizadeh, A. A.; Amini, M.; Daneshi, A. Chem. Eng. J. 2008, 145, 267–275. 43.Silva, M. M. F.; Oliveira, M. M.; Avelino, M. C.; Fonseca, M. G.; Almeida, R. K. S.; Silva Filho, E. C. Chem. Eng.
  • J. 2012, 203, 259–268.
  • Salleh, M. A. M.; Mahmoud, D. K.; Karim, W. A. W. A.; Idris, A. Desalination 2011, 280, 1–13.
  • Hu, B.; Luo, H. Appl. Surf. Sci. 2010, 257, 769–775.
  • Sheshdeh, R. K.; Nikou, M. R. K.; Badii, K.; Limaee, N. Y.; Golkarnarenji, G. J. Taiwan Inst. Chem. Eng. 2014, 45, 1792–1802. 47.Karaca, S.; G¨urses, A.; Ejder, M.; A¸cıkyıldız, M. J. Colloid Interface Sci. 2004, 277, 257–263.
  • de Luna, M. D. G.; Flores, E. D.; Genuino, D. A. D.; Futalan, C. M.; Wan, M.-W. J. Taiwan Inst. Chem. Eng. 2013, 44, 646–653.
  • Madeira, M.; Auxtero, E.; Sousa, E. Geoderma 2003, 117, 225–241.
  • Khataee, A. R.; Dehghan, G. J. Taiwan Inst. Chem. Eng. 2011, 42, 26–33.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Conversion of racemic allylic hydroperoxides into corresponding chiral 1/2,3-triols by using catalytic OsO4 and chiral cinchona ligands in the absence of co-oxidant

Mehmet Serdar GÜLTEKİN, Haydar GÖKSU

Microwave-assisted synthesis of novel 8-chloro-[1,2,4]triazolo[4,3-$a$]pyridine derivatives

LINJIONG ZHANG, MINGYAN YANG, Beizhen HU, ZHAOHUI SUN, XINGHAI LIU, JIANQUAN WENG, CHENGXIA TAN

Microwave-assisted regioselective [1,3]-dipolar cycloaddition of 3-methyl-2-(substitutedbenzylidene)-5-oxopyrazolidin-2-ium-1-ides to benzothiophene 1,1-dioxide

Yaşar DÜRÜST, Eda SAĞIRLI, Akin SAĞIRLI

Microwave-assisted synthesis of condensed 1,4-dihydropyridines as potential calcium channel modulators

ERDEM KAMİL ÖZER, MİYASE GÖZDE GÜNDÜZ, AHMED EL-KHOULY, MEHMET YILDIRIM SARA, RAHİME ŞİMŞEK, ALPER BEKTAŞ İSKİT, OSMAN CİHAT ŞAFAK

A comparative study on fabrication of Cu$_{2}$ZnSnS$_{4}$ (CZTS) nanofibers using acetate and chloride metal precursors

BURAK ZAFER BÜYÜKBEKAR, FARUK ÖZEL, HÜSEYİN ŞAKALAK, HALİT ÇAVUŞOĞLU, MUSTAFA ERSÖZ, MAHMUT KUŞ, MUSTAFA SELMAN YAVUZ

Functional gold nanoparticle coated surfaces for CA 125 cancer biomarker detection

İlknur TUNÇ, Hepi Hari SUSAPTO, Mustafa Özgür GÜLER

Synthesis and biological evaluation of a new series of 4-alkoxy-2-arylquinoline derivatives as potential antituberculosis agents

Gonca TOSUN, Tayfun ARSLAN, Zeynep İSKEFİYELİ, Murat KÜÇÜK, Şengül Alpay KARAOĞLU, Nurettin YAYLI

Enhanced electrocatalytic efficiency of C/MWNTs for methanol oxidation using Ni deposited on MWNTs

Murat FARSAK, Gülfeza KARDAŞ

Simultaneous analysis of losartan, its active metabolite, and hydrochlorothiazide in human plasma by a UPLC-MS/MS method

Priyanka A. SHAH, Primal SHARMA, Jaivik V. SHAH, Mallika SANYAL, Pranav S. SHRIVASTAV

Synthesis of metal-free and metallophthalocyanines containing 18- and 21-membered macrocycles with mixed donor atoms and their metal-ion binding properties

Halil Zeki GÖK