Corrosion and wear behaviour of highly porous Ti-TiB-TiN$_{\mathbf{x}}$ in situ composites in simulated physiological solution

Öz Highly porous Ti matrix composites can be a solution for some of the major clinical concerns for the load bearing implants such as low tribocorrosion resistance, stress shielding, and lack of biological anchorage. In order to respond to these needs, highly porous Ti-TiB-TiN$_{x}$ in-situ composites were synthesized by pressureless sintering using BN as reactant and urea as space holder. Corrosion behaviour was investigated at body temperature, in phosphate buffer saline solution PBS , by measuring open circuit potential OCP and cyclic polarization. Wear behaviour was studied in PBS by reciprocating against a 10 mm diameter alumina ball under 3 N of normal load and 1 Hz of frequency. Results showed that the formation of the in-situ reinforcing phases led to an increase on the hardness and on the wear resistance, as well, neither macro porosity nor the reinforcing phases led to localized corrosion.

___

1. Harun WSW, Asri RIM, Alias J, Zulkifli FH, Kadirgama, K et al. A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International 2018; 44 (2): 1250-1268. doi: 10.1016/j.ceramint.2017.10.162

2. Su Y, Luo C, Zhang Z, Hermawan H, Zhu D. Bioinspired surface functionalization of metallic biomaterials. Journal of the Mechanical Behavior of Biomedical Materials 2018; 77: 90-105. doi: 10.1016/j.jmbbm.2017.08.035

3. Niinomi M. Design and development of metallic biomaterials with biological and mechanical biocompatibility. Journal of Biomedical Materials Research - Part A 2019; 107 (5): 944-954. doi: 10.1002/jbm.a.36667

4. Revathi A, Magesh S, Balla VK, Das M, Manivasagam G. Current advances in enhancement of wear and corrosion resistance of titanium alloys - a review. Materials Technology 2016; 31 (12): 696-704. doi: 10.1080/10667857.2016.1212780

5. Matassi F, Botti A, Sirleo L, Carulli C, Innocenti M. Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism 2013; 10 (2): 111-115. doi: 10.11138/ccmbm/2013.10.2.111

6. Goriainov V, Cook R, Latham JM, Dunlop DG, Oreffo ROC. Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomaterialia 2014; 10 (10): 4043-4057. doi: 10.1016/j.actbio.2014.06.004

7. Monfared A, Kokabi AH, Asgari S. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process. Materials Chemistry and Physics 2013; 137 (3): 959-966. doi: 10.1016/j.matchemphys.2012.11.009

8. Toptan F, Rocha LA. Tribocorrosion in metal matrix composites. In Tyagi R, Davim JP (editors). Processing Techniques and Tribological Behavior of Composite Materials. Hershey, PA, USA; IGI Global , 2015, pp. 149-167. doi: 10.4018/978-1-4666-7530-8.ch006

9. Rautray TR, Narayanan R, Kim K-HH. Ion implantation of titanium based biomaterials. Progress in Materials Science 2011; 56 (8): 1137-1177. doi: 10.1016/j.pmatsci.2011.03.002

10. Hussein MA, Mohammed AS, Al-Aqeeli N. Wear characteristics of metallic biomaterials: a review. Materials 2015; 8 (5): 2749-2768. doi: 10.3390/ma8052749

11. Li G, Wang L, Pan W, Yang F, Jiang W et al. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects. Scientific Reports 2016; 6: 1-11. doi: 10.1038/srep34072

12. Mutlu I, Oktay E. Production and aging of highly porous 17-4 PH stainless steel. Journal of Porous Materials 2012; 19 (4): 433-440. doi: 10.1007/s10934-011-9491-8

13. Butev E, Esen Z, Bor S. In vitro bioactivity investigation of alkali treated Ti6Al7Nb alloy foams. Applied Surface Science 2015; 327: 437-443. doi: 10.1016/j.apsusc.2014.12.005

14. Dizlek ME, Guden M, Turkan U, Tasdemirci A. Processing and compression testing of Ti6Al4V foams for biomedical applications. Journal of Materials Science 2009; 44 (6): 1512-1519. doi: 10.1007/s10853-008-3038-7

15. Jakubowicz J, Adamek G, Dewidar M. Titanium foam made with saccharose as a space holder. Journal of Porous Materials 2013; 20 (5): 1137-1141. doi: 10.1007/s10934-013-9696-0

16. Niu W, Bai C, Qiu G, Wang Q, Wen L et al. Preparation and characterization of porous titanium using space-holder technique. Rare Metals 2009; 28 (4): 338-342. doi: 10.1007/s12598-009-0066-7

17. Pałka K, Pokrowiecki R. Porous Titanium Implants: a review. Advanced Engineering Materials 2018; 20 (5): 1700648. doi: 10.1002/adem.201700648

18. Mour M, Das D, Winkler T, Hoenig E, Mielke G et al. Advances in porous biomaterials for dental and orthopaedic applications. Materials 2010; 3 (5): 2947-2974. doi: 10.3390/ma3052947

19. Seah KHW, Thampuran R, Teoh SH. The influence of pore morphology on corrosion. Corrosion Science 1998; 40 (4-5): 547-556. doi: 10.1016/S0010-938X(97)00152-2

20. Alves AC., Sendão I, Ariza E, Toptan F, Ponthiaux P et al. Corrosion behaviour of porous Ti intended for biomedical applications. Journal of Porous Materials 2016; 23 (5): 1261-1268. doi: 10.1007/s10934-016-0185-0

21. Toptan F, Alves AC, Pinto AMP, Ponthiaux P. Tribocorrosion behavior of bio-functionalized highly porous titanium. Journal of the Mechanical Behavior of Biomedical Materials 2017; 69: 144-152. doi: 10.1016/j.jmbbm.2017.01.006

22. Liu S, Wang J, Lu T, Qiu G, Cui H. Mechanical Behavior and Microstructure of Porous Ti Using TiC as Reinforcement. In: Minerals, Metals and Materials Series 2019. Cham, Switzerland: Springer, 2019, pp. 495-501. doi: 10.1007/978-3-030-05861-6_46

23. Gain AK, Zhang L, Quadir MZ. Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders. Materials Science and Engineering A 2016; 662: 258-267. doi: 10.1016/j.msea.2016.03.066

24. Tang CY, Wong CT, Zhang LN, Choy MT, Chow TW et al. In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder. Journal of Alloys and Compounds 2013; 557: 67-72. doi: 10.1016/j.jallcom.2012.12.147

25. Blackwood, DJ, Chua AWC, Seah KHW, Thampura, R, Teoh SH. Corrosion behaviour of porous titaniumgraphite composites designed for surgical implants. Corrosion Science 2000; 42 (3): 481-503. doi: 10.1016/S0010- 938X(99)00103-1

26. Aikin RM. The mechanical properties of in-situ composites. JOM: The Journal of The Minerals, Metals & Materials Society 1997; 49 (8): 35-39. doi: 10.1007/BF02914400

27. Silva JI, Alves AC, Pinto AM, Silva FS, Toptan F. Dry sliding wear behaviour of Ti-TiB-TiNx in-situ composite synthesised by reactive hot pressing. International Journal of Surface Science and Engineering 2016; 10 (4): 317-329. doi: 10.1504/IJSURFSE.2016.077533

28. Silva JI, Alves AC, Pinto AM, Toptan F. Corrosion and tribocorrosion behavior of Ti−TiB−TiNx in-situ hybrid composite synthesized by reactive hot pressing. Journal of the Mechanical Behavior of Biomedical Materials 2017; 74: 195-203. doi: 10.1016/j.jmbbm.2017.05.041

29. Arifvianto B, Zhou J. Fabrication of metallic biomedical scaffolds with the space holder method: A review. Materials 2014; 7 (5): 3588-3622. doi: 10.3390/ma7053588

30. Singh R, Lee PD, Dashwood RJ, Lindley TC. Titanium foams for biomedical applications: a review. Materials Technology 2010; 25 (3-4): 127-136. doi: 10.1179/175355510X12744412709403

31. Laptev A, Bram M, Buchkremer HP, Stöver D. Study of production route for titanium parts combining very high porosity and complex shape. Powder Metallurgy 2004; 47 (1): 85-92. doi: 10.1179/003258904225015536

32. Tuncer N, Arslan G, Maire E, Salvo L. Investigation of spacer size effect on architecture and mechanical properties of porous titanium. Materials Science and Engineering A 2011; 530 (1): 633-642. doi: 10.1016/j.msea.2011.10.036

33. Vasconcellos LM, Carvalho YR, Prado R, Vasconcellos L, Graça M et al. Porous titanium by powder metallurgy for biomedical application: characterization, cell citotoxity and in vivo tests of osseointegration. In Hudak R, Penhaker M, Majernik J (editors). Biomedical Engineering- Technical Applications in Medicine. London, UK: IntechOpen, 2015, pp. 48-74. doi: 10.5772/2608

34. Salantiu AM, Fekete C, Muresan L, Pascuta P, Popa F et al. Anodic oxidation of PM porous titanium for increasing the corrosion resistance of endosseous implants. Materials Chemistry and Physics 2015; 149-150: 453-459. doi: 10.1016/j.matchemphys.2014.10.044

35. Miao X, Sun D. Graded/gradient porous biomaterials. Materials 2010; 3 (1): 26-47. doi: 10.3390/ma3010026

36. Yılmaz E, Gökçe A, Findik F, Gulsoy HO, İyibilgin O. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. Journal of the Mechanical Behavior of Biomedical Materials 2018; 87: 59-67. doi: 10.1016/j.jmbbm.2018.07.018

37. Mondal DP, Das S, Jha N. Dry sliding wear behaviour of aluminum syntactic foam. Materials and Design 2009; 30 (7): 2563-2568. doi: 10.1016/j.matdes.2008.09.034

38. Salahinejad E, Amini R, Marasi M, Hadianfard MJ. Microstructure and wear behavior of a porous nanocrystalline nickel-free austenitic stainless steel developed by powder metallurgy. Materials and Design 2010; 31 (4): 2259-2263. doi: 10.1016/j.matdes.2009.10.008

39. Qu J, Blau PJ, Klett J, Jolly B. Sliding friction and wear characteristics of novel graphitic foam materials. Tribology Letters 2004; 17 (4): 879-886. doi: 10.1007/s11249-004-8096-7

40. Jha N, Badkul A, Mondal DP, Das S, Singh M. Sliding wear behaviour of aluminum syntactic foam: A comparison with Al10 wt% SiC composites. Tribology International 2011; 44 (3): 220-231. doi: 10.1016/j.triboint.2010.10.004

41. Gradzka-Dahlke M, Dabrowski JR, Dabrowski B. Characteristic of the porous 316 stainless steel for the friction element of prosthetic joint. Wear 2007; 263 (7-12 SPEC. ISS.): 1023-1029. doi: 10.1016/j.wear.2007.01.119

42. Hamid AA, Ghosh PK, Jain SC, Ray S. The influence of porosity and particles content on dry sliding wear of cast in situ Al(Ti)-Al2O3(TiO2) composite. Wear 2008; 265 (1-2): 14-26. doi: 10.1016/j.wear.2007.08.018

43. Vardavoulias M, Jouanny-Tresy C, Jeandin M. Sliding-wear behaviour of ceramic particle-reinforced high-speed steel obtained by powder metallurgy. Wear 1993; 165 (2): 141-149. doi: 10.1016/0043-1648(93)90329-K

44. Doni Z, Alves AC, Toptan F, Gomes JR, Ramalho A et al. Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys. Materials and Design 2013; 52: 47-57. doi:10.1016/j.matdes.2013.05.032