MWCNTs-Fe2O3 nanoparticle nanohybrid-based highly sensitive electrochemical sensor for the detection of kaempferol in broccoli samples

MWCNTs-Fe2O3 nanoparticle nanohybrid-based highly sensitive electrochemical sensor for the detection of kaempferol in broccoli samples

This work reports an electrochemical sensor with a modified glassy carbon electrode for the detection ofkaempferol. The method was tailored by the immobilization of multiwalled carbon nanotubes (MWCNTs) assimilated with Fe 2 O3 nanoparticles (NPs) onto the electrode surface to detect kaempferol using differential pulse voltammetry. Thermogravimetric, transmission electron microscopic, cyclic, and differential voltammetric techniques were employed to characterize the developed electrochemical sensor. The kaempferol produces an anodic quasireversible peak at pH 6.6 in phosphate buffer with Fe 2 O3 NPs/MWCNTs/GCE. The current of the anodic peak at 0.32 V increases linearly upon addition of kaempferol standard, resulting in Ip(µA) = 1.577(µM) + 1.347 (R2 = 0.9930). The limits of detection and limits of quantification were found to be 0.53 µM and 1.73 µM, respectively. Upon quantitative analysis of kaempferol in broccoli samples, it was found to be 3.78 µg g −1 with an average percent recovery of 99.55%. The findings of this study identify the efficient catalytic property as a major contributor in the electron-transferring capacity from the electrode surface to the analyte, with promising possibilities of designing a highly sensitive electrochemical sensor for food industry applications.

___

  • 1. Dar RA, Naikoo GA, Hassan IU, Shaikh AM. Electrochemical behavior of kaempferol and its determination in presence of quercetin employing multi-walled carbon nanotube modified carbon paste electrode. Analytical Chemistry Research 2016; 7: 1-8. doi: 10.1016/j.ancr.2015.11.002
  • 2. He JB, Yuan SJ, Du JQ, Hu XR, Wang Y. Voltammetric and spectral characterization of two flavonols for assaydependent antioxidant capacity. Bioelectrochemistry 2009; 75 (2): 110-116. doi: 10.1016/j.bioelechem.2009.02.006
  • 3. Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M et al. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays . Food Chemistry 2008; 111 (1): 61-66. doi: 10.1016/j.foodchem. 2008.03.033
  • 4. Dar RA, Naikoo GA, Pitre KS. Electrocatalytic oxidative determination of reserpine at electrochemically functionalized single walled carbon nanotube with polyaniline. Electrochimica Acta 2013; 111: 526-534. doi: 10.1016/j.electacta.2013.08.128
  • 5. Özay Y, Güzel S, Yumrutaş Ö, Pehlivanoğlu B, Erdoğdu İH et al. Wound healing effect of kaempferol in diabetic and nondiabetic rats . Journal of Surgical Research 2019; 233: 284-296. doi: 10.1016/j.jss.2018.08.009
  • 6. Li W, Du B, Wang T, Wang S, Zhang J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the ataxia-telangiectasia mutated-p53 pathway with the involvement of p53 upregulated modulator of apoptosis . Chemico-Biological Interactions 2009; 177 (2): 121-127. doi: 10.1016/j.cbi.2008.10.048
  • 7. Liao W, Chen L, Ma X, Jiao R, Li X et al. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells . European Journal of Medicinal Chemistry 2016; 114: 24-32. doi: 10.1016/j.ejmech.2016.02.045
  • 8. Xiao J, Sun GB, Sun B, Wu Y, He L et al. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 2012; 292 (1): 53-62. doi: 10.1016/j.tox.2011.11.018
  • 9. Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rhokinase mediated inflammatory signalling. Biomedicine and Pharmacotherapy 2019; 109: 1610-1619. doi: 10.1016/ j.biopha.2018.10.195
  • 10. Wang H, Chen L, Zhang X, Xu L, Xie B et al. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stress-Grp78-CHOP signaling pathway. Biomedicine & Pharmacotherapy 2019; 111: 468-475. doi: 10.1016/j.biopha.2018.12.105
  • 11. Sun Z, Li Q, Hou R, Sun H, Tang Q et al. Kaempferol-3-O-glucorhamnoside inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo. Toxicology and Applied Pharmacology 2019; 364: 22-28. doi: 10.1016/j.taap.2018.12.008
  • 12. Yang H, Liu X, Fei R, Hu Y. Sensitive and selective detection of Ag + in aqueous solutions using Fe 3 O4 @Au nanoparticles as smart electrochemical nanosensors . Talanta 2013; 116: 548-553. doi: 10.1016/j.talanta.2013.07.041
  • 13. Gong K, Dong Y, Xiong S, Chen Y, Mao L. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes . Biosensors and Bioelectronics 2004; 20 (2): 253-259. doi: 10.1016/j.bios.2004.01.014
  • 14. Chen G, Ma X, Meng F, Li G. The electron transfer reactivity of kaempferol and its interaction with amino acid residues . Bioelectrochemistry 2008; 72 (2): 169-173. doi: 10.1016/j.bioelechem.2008.02.001
  • 15. Yang B, Kotani A, Arai K, Kusu F. Estimation of the antioxidant activities of flavonoids from their oxidation potentials . Analytical Sciences 2001; 17 (5): 599-604. doi: 10.2116/analsci.17.599
  • 16. Li S, Zhang T, Tang R, Qiu H, Wang C et al. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles . Journal of Magnetism and Magnetic Materials 2015; 379: 226-231. doi: 10.1016/j.jmmm.2014.12.054
  • 17. Balgobind K, Kanchi S, Sharma D, Bisetty K, Sabela M. Hybrid of ZnONPs/MWCNTs for electrochemical detection of aspartame in food and beverage samples . Journal of Electroanalytical Chemistry 2016; 774: 51-57. doi: 10.1016/j.jelechem.2016.05.021
  • 18. Song Y, Zhao M, Wang X, Qu H, Liu Y et al. Simultaneous electrochemical determination of catechol and hydroquinone in seawater using Co3O4/MWCNTs/GCE. Materials Chemistry and Physics 2019; 234: 217-223. doi: 10.1016/j.matchemphys.2019.05.071
  • 19. Shams A, Yari A. A new sensor consisting of Ag-MWCNT nanocomposite as the sensing element for electrochemical determination of Epirubicin. Sensors and Actuators B 2019; 286: 131-138. doi: 10.1016/j.snb.2019.01.128
  • 20. Sharma D, Sabela MI, Kanchi S, Bisetty K, Skelton AA et al. Green synthesis, characterization and electrochemical sensing of silymarin by ZnO nanoparticles: experimental and DFT studies . Journal of Electroanalytical Chemistry 2018; 808: 160-172. doi: 10.1016/j.jelechem.2017.11.039
  • 21. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters 2012; 7 (1): 144-144. doi: 10.1186/1556-276X-7-144
  • 22. Ellis AV, Vijayamohanan K, Goswami R, Chakrapani N, Ramanathan L et al. Hydrophobic anchoring of monolayerprotected gold nanoclusters to carbon nanotubes . Nano Letters 2003; 3 (1): 279-282. doi: 10.1021/nl025824o
  • 23. Liao X, Luo J, Wu J, Fan T, Yao Y et al. A sensitive DNAzyme-based electrochemical sensor for Pb2+ detection with platinum nanoparticles decorated TiO2/α-Fe2O3 nanocomposite as signal labels . Journal of Electroanalytical Chemistry 2018; 829: 129-137. doi: 10.1016/j.jelechem.2018.10.009
  • 24. Li B, Li M, Meng F, Liu J. Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sensors and Actuators B 2019; 290: 396-405. doi: 10.1016/j.snb.2019.04.002
  • 25. Jiang L, Gao L. Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles . Carbon 2003; 41 (15): 2923-2929. doi: 10.1016/S0008-6223(03)00339-7
  • 26. Teja AS, Koh PY. Synthesis, properties, and applications of magnetic iron oxide nanoparticles . Progress in Crystal Growth and Characterization of Materials 2009; 55 (1): 22-45. doi: 10.1016/j.pcrysgrow.2008.08.003
  • 27. Zhu Z, Su Y, Li J, Li D, Zhang J et al. Highly sensitive electrochemical sensor for mercury (II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Analytical Chemistry 2009; 81 (18): 7660-7666. doi: 10.1021/ac9010809
  • 28. Yamashita T, Hayes P. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials . Applied Surface Science 2008; 254 (8): 2441-2449. doi: 10.1016/j.apsusc.2007.09.063
  • 29. Sabela MI, Mpanza T, Kanchi S, Sharma D, Bisetty K. Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosensors and Bioelectronics 2016; 83: 45-53. doi: 10.1016/j.bios.2016.04.037
  • 30. Dassault Systèmes BIOVIA. Materials Studio, v2018. San Diego, CA, USA: Dassault Systèmes, 2018.
  • 31. Sun H. COMPASS:? An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds . Journal of Physical Chemistry B 1998; 102 (38): 7338-7364. doi: 10.1021/jp980939v
  • 32. Zanello P, Inorganic Electrochemistry: Theory, Practice and Applications. London, UK: Royal Society of Chemistry, 2003.
  • 33. Janeiro P, Brett AMO. Catechin electrochemical oxidation mechanisms . Analytica Chimica Acta 2004; 518 (1): 109-115. doi: 10.1016/j.aca.2004.05.038
  • 34. Makhotkina O, Kilmartin PA. Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: cyclic voltammetry. Journal of Electroanalytical Chemistry 2009; 633 (1): 165-174. doi: 10.1016/j.jelechem.2009.05.007
  • 35. Fu Y, Lin Y, Chen T, Wang L. Study on the polyfurfural film modified glassy carbon electrode and its application in polyphenols determination. Journal of Electroanalytical Chemistry 2012; 687: 25-29. doi: 10.1016/j.jelechem.2012. 09.040
  • 36. Vlamidis Y, Gualandi I, Tonelli D. Amperometric biosensors based on reduced GO and MWCNTs composite for polyphenols detection in fruit juices . Journal of Electroanalytical Chemistry 2017; 799: 285-292. doi: 10.1016/j.jelechem.2017.06.012
  • 37. Song JJ, Lu Y, Zhu SW, Huang QA, Wei Y. Selective detection toward quercetin and kaempferol on NH3 - plasma treated carbon nanotubes modified glassy carbon electrode. Analytical Sciences 2015; 31 (1): 225-230. doi: 10.2116/analsci.31.225
  • 38. Zheng XF, Zao J, Chen GF, Liu SL, Li GX. Electroanalysis of kaempferol using pyrolytic graphite and a hemoglobin/polysorbate-20 modified electrodes . Journal of Analytical Chemistry 2008; 63 (4): 381-385. doi: 10.1134/s1061934808040126
  • 39. Liang Z, Zhai H, Chen Z, Wang S, Wang S. A sensitive electrochemical sensor for flavonoids based on a multi-walled carbon paste electrode modified by cetyltrimethyl ammonium bromide-carboxylic multi-walled carbon nanotubes . Sensors and Actuators B 2017; 244: 897-906. doi: 10.1016/j.snb.2016.12.108
  • 40. Piovesan JV, Jost CL, Spinelli A. Electroanalytical determination of total phenolic compounds by square-wave voltammetry using a poly(vinylpyrrolidone)-modified carbon-paste electrode. Sensors and Actuators B 2015; 216: 192-197. doi: 10.1016/j.snb.2015.04.031
  • 41. Zhang K, Song G, Li Y, Wu X, Li K et al. Voltammetric studies of kaempferol on polyvinyl pyrrolidone cladding quantum dots CdS doped carbon paste electrode and analytical application. Sensors and Actuators B 2014; 191: 673-680. doi: 10.1016/j.snb.2013.10.051
  • 42. Hua L, Peng Z, Chia LS, Goh NK, Tan SN. Separation of kaempferols in Impatiens balsamina flowers by capillary electrophoresis with electrochemical detection. Journal of Chromatography A 2001; 909 (2): 297-303. doi: 10.1016/S0021-9673(00)01102-X
  • 43. Aguilar-Sánchez R, Áhuatl-García F, Dávila-Jiménez MM, Elizalde-González MP, Guevara-Villa MRG. Chromatographic and electrochemical determination of quercetin and kaempferol in phytopharmaceuticals . Journal of Pharmaceutical and Biomedical Analysis 2005; 38 (2): 239-249. doi: 10.1016/j.jpba.2004.12.022
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Natural diterpenoid alysine A isolated from Teucrium alyssifolium exerts antidiabetic effect via enhanced glucose uptake and suppressed glucose absorption

Anıl YILMAZ, Alaattin ŞEN, Buket AYAR, Gurbet Çelik TURGUT, Özden Özgün ACAR, Gülaçtı TOPÇU

Adem GÜNER, Elifsu POLATLI, Tamer AKKAN, Hakan BEKTAŞ, Canan ALBAY

Acetylene-bridged triazine $\pi $-conjugated structures: synthesis and liquid crystalline properties

Nihat AKKURT, Mohammed Hadi Ali AL-JUMAILI, Belkiz Bilgin ERAN, Hale OCAK, Lokman TORUN

Design, synthesis, biological evaluation and molecular docking of novel molecules to PARP-1 enzyme

Petek BALLAR KIRMIZIBAYRAK, Fatih TOK, Sinem YILMAZ, Recep İLHAN, Tuğba TAŞKIN TOK, Bedia KOÇYİĞİT KAYMAKÇIOĞLU

Ionic liquid-based graphene oxide-coated fiber for headspace-solid phase microextraction of polycyclic aromatic hydrocarbons in water samples

Melek MERDİVAN, Paniz TASHAKKORI, Pelin ERDEM, Serap Seyhan BOZKURT

Filiz BORAN, Sevil Çetinkaya GÜRER

Silylation of epoxidized soybean oil with triethoxysilanes, synthesis and characterization of their polyurethanes

Aynur ÖZŞEKER, Mustafa Yasin ŞEN, Kemal KARADENİZ

Modeling and optimizing microwave-assisted extraction of antioxidant compounds from marigold (Calendula officinalis L.) using response surface methodology

Burcu BEKDEŞER

Ronak EISAVI, Fateme AHMADI, Behzad ZEYNIZADEH, Mehri KOUHKAN

MWCNTs-Fe2O3 nanoparticle nanohybrid-based highly sensitive electrochemical sensor for the detection of kaempferol in broccoli samples

Nomnotho JIYANE, Phumlane S. MDLULI, Olayide A. ARODOLA, Myalowenkosi I. SABELA, Suvardhan KANCHI, Mavis XHAKAZA, Krishna BISETTY