Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity

Metal complexes of Schiff bases derived from 2-furancarboxaldehyde and o-phenylenediamine (L1), and 2-thiophenecarboxaldehyde and 2-aminothiophenol (HL2) are reported and characterized based on elemental analyses, IR 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TGA). The ligand dissociation, as well as the metal-ligand stability constants were calculated, pH-metrically, at 25 °C and ionic strength m = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(L1)(H2O)2](Cl)n \cdot yH2O (where M = Fe(III), Ni(II), Cu(II); n = 2-3, y = 2-4); [M(L1)](X)2 \cdot yH2O (where M = Co(II), Zn(II), UO2(II), X = Cl, AcO or NO3, y = 1-3); [M(L2)2] \cdot yH2O (where M = Co(II), Ni(II), Cu(II); X = Cl; y = 0-2 and Zn(II); X = AcO, y = 0); and [Fe(L2)2]Cl \cdot 2H2O and [UO2(HL2)2](NO3)2. The molar conductance data reveal that all the metal chelates of the L1 ligand, and Fe(III) and UO2(II) chelates of HL2 are electrolytes, while Co(II), Ni(II), Cu(II), and Zn(II) chelates of HL2 are non-electrolytes. IR spectra show that L1 is coordinated to the metal ions in a tetradentate manner, with ONNO donor sites of azomethine--N and furan-O, whereas the HL2 ligand is coordinated to the metal ions in a terdentate manner with SNS donor sites of azomethine--N, thiophene-S, and thiol-S. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral and tetrahedral. The thermal behavior of these chelates shows that the hydrated complexes lose water molecules of hydration in the first step and is immediately followed by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as E*, D H*, D S*, and D G*, are calculated from the DrTG curves using the Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes, were also screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus Pyogones, as well as fungi (Candida). The activity data show the metal complexes to be more potent antibacterials than the parent Schiff base ligand against one or more bacterial species.

Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity

Metal complexes of Schiff bases derived from 2-furancarboxaldehyde and o-phenylenediamine (L1), and 2-thiophenecarboxaldehyde and 2-aminothiophenol (HL2) are reported and characterized based on elemental analyses, IR 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TGA). The ligand dissociation, as well as the metal-ligand stability constants were calculated, pH-metrically, at 25 °C and ionic strength m = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(L1)(H2O)2](Cl)n \cdot yH2O (where M = Fe(III), Ni(II), Cu(II); n = 2-3, y = 2-4); [M(L1)](X)2 \cdot yH2O (where M = Co(II), Zn(II), UO2(II), X = Cl, AcO or NO3, y = 1-3); [M(L2)2] \cdot yH2O (where M = Co(II), Ni(II), Cu(II); X = Cl; y = 0-2 and Zn(II); X = AcO, y = 0); and [Fe(L2)2]Cl \cdot 2H2O and [UO2(HL2)2](NO3)2. The molar conductance data reveal that all the metal chelates of the L1 ligand, and Fe(III) and UO2(II) chelates of HL2 are electrolytes, while Co(II), Ni(II), Cu(II), and Zn(II) chelates of HL2 are non-electrolytes. IR spectra show that L1 is coordinated to the metal ions in a tetradentate manner, with ONNO donor sites of azomethine--N and furan-O, whereas the HL2 ligand is coordinated to the metal ions in a terdentate manner with SNS donor sites of azomethine--N, thiophene-S, and thiol-S. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral and tetrahedral. The thermal behavior of these chelates shows that the hydrated complexes lose water molecules of hydration in the first step and is immediately followed by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as E*, D H*, D S*, and D G*, are calculated from the DrTG curves using the Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes, were also screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus Pyogones, as well as fungi (Candida). The activity data show the metal complexes to be more potent antibacterials than the parent Schiff base ligand against one or more bacterial species.

Kaynakça

R.D. Jones, D.A. Summerville and F. Basolo, Chem. Rev. 79, 139 (1979).

G.H. Olie and S. Olive, “The Chemistry of the Catalyzes Hydrogenation of Carbon Monoxide”, p.

, Springer, Berlin, 1984.

H. Dugas and C. Penney, “Bioorganic Chemistry”, p. 435, Springer, New York, 1981.

J.D. Margerum and L.J. Mller, “Photochromism”, p. 569, Wiley Interscience, New York, 1971.

W.J. Sawodny and M. Riederer, Angew. Chem. Int. Edn. Engl. 16, 859 (1977).

A.S. Salameh and H.A. Tayim, Polyhedron, 2, 829-34 (1983).

H.A. Tayim and A.S. Salameh, Polyhedron, 2, 1091-4 (1983).

B.T. Thaker, Proc. Natl. Acad. Sci. India, Sect. A, 58, 443-7 (1988).

S.D. Kolwalkar and B.H. Mehta, Asian J. Chem. 8, 406-410 (1996).

M.A. Khalifa and A.M. Hassaan, J. Chem. Soc. Pak. 18, 115-118 (1996).

Y.M. Issa, M.M. Omar, H.M. Abdel-Fattah and A.A. Soliman, J. Indian Chem. Soc. 73, (1996).

J.J. Murthy and B.H. Mehta, Orient. J. Chem. 14, 129-131 (1998).

S. Zhou, S. Liu and G. Zhou, Huaxue Shiji, 23, 26-27 (2001).

N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Synth. React. Inorg. Met.-Org. Chem. 31, 1249- 1270 (2001).

S. Zhou, F. Xie and S. Ni, Huaxue Shiji, 23, 261-262 (2001).

A.I. Vogel, ”Practical Organic Chemistry Including Quantitative Organic Analysis”, 3rdEd., p. 854, Longmans; London, 1956.

A.I. Vogel, “Quantitative Inorganic Analysis Including Elemental Instrumental Analysis”, 2ndEd., Longmans; London, 1962.

R. Sarin and K.N. Mushi, J. Inorg. Nucl. Chem. 34, 581 (1972).

D. Feng and B. Wang, Transition Met. Chem. 18, 101-3 (1993). M. Kumar, Asian J. Chem. 6, 576-80

F. Capitan, P. Espinosa, F. Molina and L.F. Capitan-Vallvey, Rev. Roum. Chim. 32, 151-4 (1987).

H.A. Tayim and A.S.S. Salameh, Polyhedron, 2, 10, 1091-4 (1983).

M.E. Ibrahim, A.A.H. Ali and F.M.M. Maher, J. Chem. Techn. Biotechnol. 55, 217 (1992).

N. Sari, S. Arslan, E. Logoglu and I. Sakiyan, J. of Sci. 16, 283 (2003).

J. Bjerrum, “Metal Amine Formation in Aqueous Solution”, Haase, Copenhagen, 1941.

H. Irving and R.J.P. Williams, Nature, 162, 746 (1948).

H. Irving and R.J.P. Williams, J. Chem. Soc. 3192 (1953).

R.D. Jones, D.A. Summerville and F. Basolo, Chem. Rev. 79, 139 (1979).

L.E. Orgel, “An Introduction to Transition Metal Chemistry Ligand Field Theory”, p.55, Methuen, 1966.

G.G. Mohamed, Zeinb H.Abd El.Wahwb, J. Thermal Anal. 73, 347-359 (2003).

A.A. Soliman and W. Linert, Thermochimica Acta, 333, 67-75 (1999).

A.P. Mishra, J. Indian Chem. Soc. 76, 35-37 (1999).

A. Kriza, M. Voiculescu and A. Nicolae, Analele Universitatii Bucuresti. Chimie, 11, 197- 201 (2002).

J.K. Nag, D. Das, B.B. De and C. Sinha, J. Indian Chem. Soc. 75, 496-498 (1998).

M. Hossain, S.K. Chattopadhyay and S. Ghosh, Polyhedron, 16, 1793-1802 (1997).

M.M. Moustafa, J. Thermal Anal. 50, 463-471 (1997).

G.G. Mohamed, Nadia E.A. El-Gamel and F.A. Nour El-Dien, Synth. React. Inorg. Met.- Org. Chem. 31,347-358 (2001).

F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, “Advanced Inorganic Chemistry”, 6thed., Wiley, New York, 1999.

D.R. Zhu, Y. Song, Y. Xu, Y. Zhang, S.S.S. Raj, H.K. Fun and X.Z. You, Polyhedron, 19, 2019- 2025 (2000).

R. Prasad, P.P. Thankachan, M.T. Thomas and R. Pathak, J. Ind. Chem. Soc. 78, 28-31 (2001).

M.S. Masoud, A.M. Hindawy and A.S. Soayed, Trans. Met. Chem. 16, 372-376 (1991).

N.K. Gaur, R. Sharma and R.S. Sindhu, J. Ind. Chem. Soc. 78, 26-27 (2001).

M.M. Omar and Gehad G. Mohamed, Spectrochimica Acta, Part A, 61, 929-936 (2005).

N. Mondal, D.K. Dey, S. Mitra and K.M. Abdul Malik, Polyhedron, 19, 2707-2711 (2000).

J. Kohout, M. Hvastijova, J. Kozisek, J.G. Diaz, M. Valko, L. Jager and I. Svoboda, Inorg Chim. Acta 287, 186-192 (1999).

A. Bury, A.E. Underhill, D.R. Kemp, N.J. O’Shea, J.P. Smith, P.S. Gomm and F. Hallway, Inorg. Chim. Acta, 138, 85-89 (1987).

N.R.S. Kumar, M. Nethiji and K.C. Patil, Polyhedron, 10, 365-371 (1991).

J. Manonmani, R. Thirumurugan, M. Kandaswamy, M. Kuppayee, S.S.S. Raj, M.N. Ponnuswamy, G. Shan- mugam and H.K. Fun, Polyhedron, 19, 2011-2018 (2000).

J. Sanmartin, M.R. Bermejo, A.M.G. Deibe, M. Maneiro, C. Lage and A.J.C. Filho, Polyhedron, 19, 185-192

V.P. Krzyminiewska, H. Litkowska and W.R. Paryzek, Monatshefte Fur Chemie, 130, 243-247 (1999).

K.Bertoncello, G.D. Fallon, K.S. Murray and E.R.T. Tiekink, Inorg. Chem. 30, 3562 (1991).

A.W. Coats and J.P. Redfern, Nature, 20, 68 (1964).

D.C. Shanson, “Microbiology in Clinical Practice”, Wright PSG, Bristol, London, Boston, 1982.

E. Jawetz, J.L. Melnick and E.A. Adelberg, “Review of Medical Microbiology”, Lang Medical Publications, Los Angeles, California, 16thed., 1979.

A.M.S. El-Sharief, M.S. Ammar, Y.A. Ammar and M.E. Zak, Ind. J. Chem. 22B, 700-704 (1983).

A.M.S. El-Sharief, M.S. Ammar and Y.A. Mohammed, Egypt. J. Chem. 27, 535-546 (1984).

Kaynak Göster

Bibtex @araştırma makalesi { tbtkchem142555, journal = {Turkish Journal of Chemistry}, issn = {1300-0527}, eissn = {1303-6130}, address = {}, publisher = {TÜBİTAK}, year = {2006}, volume = {30}, pages = {361 - 382}, doi = {}, title = {Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity}, key = {cite}, author = {Mohamed, Gehad Geindy and Omar, Mohamed Mohamed and Hındy, Ahmed Mohamed} }
APA Mohamed, G , Omar, M , Hındy, A . (2006). Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity . Turkish Journal of Chemistry , 30 (3) , 361-382 .
MLA Mohamed, G , Omar, M , Hındy, A . "Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity" . Turkish Journal of Chemistry 30 (2006 ): 361-382 <
Chicago Mohamed, G , Omar, M , Hındy, A . "Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity". Turkish Journal of Chemistry 30 (2006 ): 361-382
RIS TY - JOUR T1 - Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity AU - Gehad Geindy Mohamed , Mohamed Mohamed Omar , Ahmed Mohamed Hındy Y1 - 2006 PY - 2006 N1 - DO - T2 - Turkish Journal of Chemistry JF - Journal JO - JOR SP - 361 EP - 382 VL - 30 IS - 3 SN - 1300-0527-1303-6130 M3 - UR - Y2 - 2021 ER -
EndNote %0 Turkish Journal of Chemistry Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity %A Gehad Geindy Mohamed , Mohamed Mohamed Omar , Ahmed Mohamed Hındy %T Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity %D 2006 %J Turkish Journal of Chemistry %P 1300-0527-1303-6130 %V 30 %N 3 %R %U
ISNAD Mohamed, Gehad Geindy , Omar, Mohamed Mohamed , Hındy, Ahmed Mohamed . "Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity". Turkish Journal of Chemistry 30 / 3 (Mart 2006): 361-382 .
AMA Mohamed G , Omar M , Hındy A . Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity. Turk J Chem. 2006; 30(3): 361-382.
Vancouver Mohamed G , Omar M , Hındy A . Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity. Turkish Journal of Chemistry. 2006; 30(3): 361-382.
IEEE G. Mohamed , M. Omar ve A. Hındy , "Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity", Turkish Journal of Chemistry, c. 30, sayı. 3, ss. 361-382, Mar. 2006
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK

9.8b 6.1b