Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity

Metal complexes of Schiff bases derived from 2-furancarboxaldehyde and o-phenylenediamine (L1), and 2-thiophenecarboxaldehyde and 2-aminothiophenol (HL2) are reported and characterized based on elemental analyses, IR 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TGA). The ligand dissociation, as well as the metal-ligand stability constants were calculated, pH-metrically, at 25 °C and ionic strength m = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(L1)(H2O)2](Cl)n \cdot yH2O (where M = Fe(III), Ni(II), Cu(II); n = 2-3, y = 2-4); [M(L1)](X)2 \cdot yH2O (where M = Co(II), Zn(II), UO2(II), X = Cl, AcO or NO3, y = 1-3); [M(L2)2] \cdot yH2O (where M = Co(II), Ni(II), Cu(II); X = Cl; y = 0-2 and Zn(II); X = AcO, y = 0); and [Fe(L2)2]Cl \cdot 2H2O and [UO2(HL2)2](NO3)2. The molar conductance data reveal that all the metal chelates of the L1 ligand, and Fe(III) and UO2(II) chelates of HL2 are electrolytes, while Co(II), Ni(II), Cu(II), and Zn(II) chelates of HL2 are non-electrolytes. IR spectra show that L1 is coordinated to the metal ions in a tetradentate manner, with ONNO donor sites of azomethine--N and furan-O, whereas the HL2 ligand is coordinated to the metal ions in a terdentate manner with SNS donor sites of azomethine--N, thiophene-S, and thiol-S. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral and tetrahedral. The thermal behavior of these chelates shows that the hydrated complexes lose water molecules of hydration in the first step and is immediately followed by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as E*, D H*, D S*, and D G*, are calculated from the DrTG curves using the Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes, were also screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus Pyogones, as well as fungi (Candida). The activity data show the metal complexes to be more potent antibacterials than the parent Schiff base ligand against one or more bacterial species.

Metal Complexes of Schiff Bases: Preparation, Characterization, and Biological Activity

Metal complexes of Schiff bases derived from 2-furancarboxaldehyde and o-phenylenediamine (L1), and 2-thiophenecarboxaldehyde and 2-aminothiophenol (HL2) are reported and characterized based on elemental analyses, IR 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TGA). The ligand dissociation, as well as the metal-ligand stability constants were calculated, pH-metrically, at 25 °C and ionic strength m = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(L1)(H2O)2](Cl)n \cdot yH2O (where M = Fe(III), Ni(II), Cu(II); n = 2-3, y = 2-4); [M(L1)](X)2 \cdot yH2O (where M = Co(II), Zn(II), UO2(II), X = Cl, AcO or NO3, y = 1-3); [M(L2)2] \cdot yH2O (where M = Co(II), Ni(II), Cu(II); X = Cl; y = 0-2 and Zn(II); X = AcO, y = 0); and [Fe(L2)2]Cl \cdot 2H2O and [UO2(HL2)2](NO3)2. The molar conductance data reveal that all the metal chelates of the L1 ligand, and Fe(III) and UO2(II) chelates of HL2 are electrolytes, while Co(II), Ni(II), Cu(II), and Zn(II) chelates of HL2 are non-electrolytes. IR spectra show that L1 is coordinated to the metal ions in a tetradentate manner, with ONNO donor sites of azomethine--N and furan-O, whereas the HL2 ligand is coordinated to the metal ions in a terdentate manner with SNS donor sites of azomethine--N, thiophene-S, and thiol-S. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral and tetrahedral. The thermal behavior of these chelates shows that the hydrated complexes lose water molecules of hydration in the first step and is immediately followed by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as E*, D H*, D S*, and D G*, are calculated from the DrTG curves using the Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes, were also screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus Pyogones, as well as fungi (Candida). The activity data show the metal complexes to be more potent antibacterials than the parent Schiff base ligand against one or more bacterial species.

___

  • R.D. Jones, D.A. Summerville and F. Basolo, Chem. Rev. 79, 139 (1979).
  • G.H. Olie and S. Olive, “The Chemistry of the Catalyzes Hydrogenation of Carbon Monoxide”, p.
  • , Springer, Berlin, 1984.
  • H. Dugas and C. Penney, “Bioorganic Chemistry”, p. 435, Springer, New York, 1981.
  • J.D. Margerum and L.J. Mller, “Photochromism”, p. 569, Wiley Interscience, New York, 1971.
  • W.J. Sawodny and M. Riederer, Angew. Chem. Int. Edn. Engl. 16, 859 (1977).
  • A.S. Salameh and H.A. Tayim, Polyhedron, 2, 829-34 (1983).
  • H.A. Tayim and A.S. Salameh, Polyhedron, 2, 1091-4 (1983).
  • B.T. Thaker, Proc. Natl. Acad. Sci. India, Sect. A, 58, 443-7 (1988).
  • S.D. Kolwalkar and B.H. Mehta, Asian J. Chem. 8, 406-410 (1996).
  • M.A. Khalifa and A.M. Hassaan, J. Chem. Soc. Pak. 18, 115-118 (1996).
  • Y.M. Issa, M.M. Omar, H.M. Abdel-Fattah and A.A. Soliman, J. Indian Chem. Soc. 73, (1996).
  • J.J. Murthy and B.H. Mehta, Orient. J. Chem. 14, 129-131 (1998).
  • S. Zhou, S. Liu and G. Zhou, Huaxue Shiji, 23, 26-27 (2001).
  • N. Raman, A. Kulandaisamy and K. Jeyasubramanian, Synth. React. Inorg. Met.-Org. Chem. 31, 1249- 1270 (2001).
  • S. Zhou, F. Xie and S. Ni, Huaxue Shiji, 23, 261-262 (2001).
  • A.I. Vogel, ”Practical Organic Chemistry Including Quantitative Organic Analysis”, 3rdEd., p. 854, Longmans; London, 1956.
  • A.I. Vogel, “Quantitative Inorganic Analysis Including Elemental Instrumental Analysis”, 2ndEd., Longmans; London, 1962.
  • R. Sarin and K.N. Mushi, J. Inorg. Nucl. Chem. 34, 581 (1972).
  • D. Feng and B. Wang, Transition Met. Chem. 18, 101-3 (1993). M. Kumar, Asian J. Chem. 6, 576-80
  • F. Capitan, P. Espinosa, F. Molina and L.F. Capitan-Vallvey, Rev. Roum. Chim. 32, 151-4 (1987).
  • H.A. Tayim and A.S.S. Salameh, Polyhedron, 2, 10, 1091-4 (1983).
  • M.E. Ibrahim, A.A.H. Ali and F.M.M. Maher, J. Chem. Techn. Biotechnol. 55, 217 (1992).
  • N. Sari, S. Arslan, E. Logoglu and I. Sakiyan, J. of Sci. 16, 283 (2003).
  • J. Bjerrum, “Metal Amine Formation in Aqueous Solution”, Haase, Copenhagen, 1941.
  • H. Irving and R.J.P. Williams, Nature, 162, 746 (1948).
  • H. Irving and R.J.P. Williams, J. Chem. Soc. 3192 (1953).
  • R.D. Jones, D.A. Summerville and F. Basolo, Chem. Rev. 79, 139 (1979).
  • L.E. Orgel, “An Introduction to Transition Metal Chemistry Ligand Field Theory”, p.55, Methuen, 1966.
  • G.G. Mohamed, Zeinb H.Abd El.Wahwb, J. Thermal Anal. 73, 347-359 (2003).
  • A.A. Soliman and W. Linert, Thermochimica Acta, 333, 67-75 (1999).
  • A.P. Mishra, J. Indian Chem. Soc. 76, 35-37 (1999).
  • A. Kriza, M. Voiculescu and A. Nicolae, Analele Universitatii Bucuresti. Chimie, 11, 197- 201 (2002).
  • J.K. Nag, D. Das, B.B. De and C. Sinha, J. Indian Chem. Soc. 75, 496-498 (1998).
  • M. Hossain, S.K. Chattopadhyay and S. Ghosh, Polyhedron, 16, 1793-1802 (1997).
  • M.M. Moustafa, J. Thermal Anal. 50, 463-471 (1997).
  • G.G. Mohamed, Nadia E.A. El-Gamel and F.A. Nour El-Dien, Synth. React. Inorg. Met.- Org. Chem. 31,347-358 (2001).
  • F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, “Advanced Inorganic Chemistry”, 6thed., Wiley, New York, 1999.
  • D.R. Zhu, Y. Song, Y. Xu, Y. Zhang, S.S.S. Raj, H.K. Fun and X.Z. You, Polyhedron, 19, 2019- 2025 (2000).
  • R. Prasad, P.P. Thankachan, M.T. Thomas and R. Pathak, J. Ind. Chem. Soc. 78, 28-31 (2001).
  • M.S. Masoud, A.M. Hindawy and A.S. Soayed, Trans. Met. Chem. 16, 372-376 (1991).
  • N.K. Gaur, R. Sharma and R.S. Sindhu, J. Ind. Chem. Soc. 78, 26-27 (2001).
  • M.M. Omar and Gehad G. Mohamed, Spectrochimica Acta, Part A, 61, 929-936 (2005).
  • N. Mondal, D.K. Dey, S. Mitra and K.M. Abdul Malik, Polyhedron, 19, 2707-2711 (2000).
  • J. Kohout, M. Hvastijova, J. Kozisek, J.G. Diaz, M. Valko, L. Jager and I. Svoboda, Inorg Chim. Acta 287, 186-192 (1999).
  • A. Bury, A.E. Underhill, D.R. Kemp, N.J. O’Shea, J.P. Smith, P.S. Gomm and F. Hallway, Inorg. Chim. Acta, 138, 85-89 (1987).
  • N.R.S. Kumar, M. Nethiji and K.C. Patil, Polyhedron, 10, 365-371 (1991).
  • J. Manonmani, R. Thirumurugan, M. Kandaswamy, M. Kuppayee, S.S.S. Raj, M.N. Ponnuswamy, G. Shan- mugam and H.K. Fun, Polyhedron, 19, 2011-2018 (2000).
  • J. Sanmartin, M.R. Bermejo, A.M.G. Deibe, M. Maneiro, C. Lage and A.J.C. Filho, Polyhedron, 19, 185-192
  • V.P. Krzyminiewska, H. Litkowska and W.R. Paryzek, Monatshefte Fur Chemie, 130, 243-247 (1999).
  • K.Bertoncello, G.D. Fallon, K.S. Murray and E.R.T. Tiekink, Inorg. Chem. 30, 3562 (1991).
  • A.W. Coats and J.P. Redfern, Nature, 20, 68 (1964).
  • D.C. Shanson, “Microbiology in Clinical Practice”, Wright PSG, Bristol, London, Boston, 1982.
  • E. Jawetz, J.L. Melnick and E.A. Adelberg, “Review of Medical Microbiology”, Lang Medical Publications, Los Angeles, California, 16thed., 1979.
  • A.M.S. El-Sharief, M.S. Ammar, Y.A. Ammar and M.E. Zak, Ind. J. Chem. 22B, 700-704 (1983).
  • A.M.S. El-Sharief, M.S. Ammar and Y.A. Mohammed, Egypt. J. Chem. 27, 535-546 (1984).
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Online Viscosity Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry

Volkan KÖSELİ, Şerife ZEYBEK, Yusuf ULUDAG

Iridoid, flavonoid, and phenylethanoid glycosides form Wiedemannia orientalis

Cavit KAZAZ, Hilal ÖZBEK, Zühal GÜVENALP, L. Ömür DEMİREZER, Türesin ÜNSALAR

Investigation of the Cation Complexation by Macrocyclic Ethers using 13C NMR Spin--Lattice Dipolar Relaxation Time Measurements

Çakıl ERK, Matthias HEYDENREICH, And Erich KLEINPETER

Synthesis and Antimicrobial Activity of Some New 3-Substituted Benzyl-5-(4-chloro-2-piperidin-1yl-thiazole-5-yl-methylene)-thiazolidine-2,4-dione Derivatives

Meltem Ceylan ÜNLÜSOY, Oya Bozdağ DÜNDAR

Secondary Metabolites from Phlomis syriaca and Their Antioxidant Activities

Ü. Şebnem HARPUT, İhsan ÇALIŞ, İclal SARACOĞLU, Ali A. DÖNMEZ, Akito NAGATSU

Investigation of the cation complexation by macrocyclic ethers using $^{13}C$ NMR spin-lattice dipolar relaxation time measurements

Matthias HEYDENREICH, Erich KLEINPETER, Çakıl ERK

Iridoid, Flavonoid, and Phenylethanoid Glycosides from Wiedemannia orientalis

Zühal Güvenalp -, Hilal ÖZBEK, Türesin ÜNSALAR, Cavit KAZAZ, L. Ömür DEMİREZER

Secondary metabolites from Phomis syriaca and their antioxidant activities

İclal SARACOĞLU, Ali Aslan DÖNMEZ, Akito NAGATSU, Ü. Şebnem HARPUT, İhsan ÇALIŞ

A Novel Approach to the Hydrothermal Synthesis of Anatase Titania Nanoparticles and the Photocatalytic Degradation of Rhodamine B

Murat AKARSU, Meltem ASİLTÜRK, Funda SAYILKAN

Cumene Cracking on Modified Mesoporous Material Type MCM-41

Ahmed BELHAKEM and Abdelkader BENGUEDDACH