Investigation of the effect of PAn and PAn/ZnO photocatalysts on 100% degradation of Congo red under UV visible light irradiation and lightless environment

PAn polyaniline and PAn/ZnO photocatalysts were synthesized using chemical polymerization of aniline. The structure characterization of the synthesized samples was analysed by using X-ray diffraction XRD , Fourier transforminfraredspectroscopy FT-IR ,scanningelectronmicroscopy SEM ,transmissionelectronmicroscopy TEM , and UV-Vis spectroscopy measurements, and thermal gravimetric analysis TGA . The photocatalytic activities of PAn and PAn/ZnO 0.1g/100ml on the degradation of the Congo red CR dye were studied under the UV visible light irradiation and the lightless environment and the efficiency of catalysts have been explained in details. Contribution of UV visible light irradiation on the 100% degradation of CR dye for the PAn and PAn/ZnO photocatalyst is determined. The reaction kinetics and effect of pH pH 4 and pH 10 were investigated by using first order kinetic model. According to the experimental results, photocatalytic reaction rate of Congo Red increased in acidic environment and under UV visible light irradiation.

___

  • 1. Allahveran S, Mehrizad A. Polyaniline/ZnS nanocomposite as a novel photocatalyst for removal of Rhodamine 6G from aqueous media: Optimization of influential parameters by response surface methodology and kinetic modeling. Journal of Molecular Liquids 2017; 225: 339-346.doi: 10.1016/j.molliq.2016.11.051
  • 2. Mingxin C,Chongzhuo B, Tangxiang C,Qiang H.One-pot synthesis of ZnO/oligoaniline nanocomposites with improved removal of organic dyes in water: Effect of adsorption on photocatalytic degradation. Materials Research Bulletin 2017; 95: 459-467.
  • 3. Gong J, Liu J, Chen X, Jiang Z, Wen X et al. Converting real-world mixed waste plastics into porous carbon nanosheets with excellent performance in the adsorption of an organic dye from wastewater. Journal of Materials Chemistry 2014; 2: 7461-7470.
  • 4. Khadhraoui M, Trabelsi H, Ksibi M, Bouguerra S, Elleuch B. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse. Journal of Hazardous Materials 2009; 161: 974-981. doi: 10.1016/j.jhazmat.2008.04.060.
  • 5. Gopinath KP, Muthukumar K, Velan M. Improved biodegradation of Congo Red by using Bacillus sp. Chemical Engineering Journal 2010; 157: 427-433. doi: 10.1016/j.biortech.2008.07.048
  • 6. Gopinath KP, Sahib HAM, Muthukumar K, Velan M. Sonochemical degradation of Congo Red: optimization through responsesurface methodology. Bioresour Technology 2009; 100: 670-675.doi: 10.1016/j.cej.2009.12.002
  • 7. Hu Z, Chen H, Ji F, Yuan S. Removal of Congo Red from aqueous solution by cattail root. Journal of Hazardous Materials 2010; 173: 292-297.doi: 10.1016/j.jhazmat.2009.08.082
  • 8. Bhoi YP, Pradhan SR, Behera C, Mishra BG. Visible light driven efficient photocatalytic degradation of Congo red dye catalyzed by hierarchical CuS-Bi 2 CuxW1-xO6 -2x nanocomposite system. Royal Society of Chemistry Advances 2016; 6: 5589-35601.
  • 9. Mehrizad A, Gharbani P. Removal of methylene blue from aqueous solution using nano-TiO2 /UV process: optimization by response surface methodology. Progress in Color Colorants and Coating 2016; 9: 135-143. doi:10.1016/j.electacta.2010.07.050
  • 10. Sobhani-Nasab A, Maddahfar M, Hosseinpour-Mashkani SM. Ce(MoO4)2 nanostructures: synthesis, characterization, and its photocatalyst application through the ultrasonic method. Journal of Molecular Liquids 2016; 216: 1-5.doi: 10.1016/j.molliq.2015.12.104
  • 11. Sınag A, Uskan B, Gulbay S. Detailed characterization of the pyrolytic liquids obtained by pyrolysis of sawdust. Journal of Analytical and Applied Pyrolysis 2010; 51: 48-52.doi.org/10.1177/0734242X12470402
  • 12. Lavand BA, Malghe YS. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. Journal of Asian Ceramic Societies 2015; 3: 305-310. doi.org/10.1016/j.jascer.2015.06.002
  • 13. Tanaka K, Padermpole K, Hisanaga T. Photocatalytic degradation of commercial azo dyes. Water Research 2000; 34: 327-333.doi:10.1016/S0043-1354(99)00093-7
  • 14. Hoffmann MR, Martin ST, Choi W, Bahenemann DW. Environmental applications of semiconductor photocatalysis.Chemical Reviews 1995; 95: 69-96.doi: 10.1021/cr00033a004
  • 15. Tang WZ, Huren A. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 1995; 31: 4157-4170.doi:10.1016/0045-6535(95)80015-D
  • 16. Sakthivel S, Neppolian B, Palanichamy M, Arabindoo B, Murugesan V. The biggest advantage of ZnO is that it absorbs over a larger fraction of solar spectrum than TiO2 . Indian Journal of Chemical Technology 2001; 6: 161-165.
  • 17. Shanmugam M, Alsalme A, Alghamdi A, Jayavel R. Photocatalytic properties of grapheme-SnO2 -PMMA nanocomposite in the degradation of methylene blue dye under direct sunlight irradiation. Materials Express 2015; 5 (4): 319-326.
  • 18. Shaheen SE, Brabec CJ, Padinger F. 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001; 78: 841-843.doi: 10.1063/1.1345834
  • 19. Irimpan L, Nampoori VPN, Radhakrishnan P. Optical Limiting in ZnO Nanocomposites. Science of Advanced Materials 2010; 2: 578-582.doi: 10.1166/sam.2010.1128
  • 20. Li J, Zhu L, Wu Y, Harima Y, Zhang A, Tang H. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self–assembling and graft polymerization.Polymer 2006; 47:7361-7367.doi: 10.1016/j.polymer.2006.08.059
  • 21. Singh DP, Ali N. Synthesis of TiO2 and CuO nanotubes and nanowires. Science of Advanced Materials 2010; 2: 474-480.
  • 22. Zhang H, Zong R, Zhu Y. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. Journal of Physical Chemistry C 2009; 113: 4605-4611.doi: 10.1021/jp810748u
  • 23. Sakthivel S, Neppolian B, Palanichamy M, Arabindoo B, Murugesan V. The biggest advantage of ZnO is that it absorbs over a larger fraction of solar spectrum than TiO2 . Indian Journal of Chemical Technology 1999; 6: 161-165. doi: 10.2166/wst.2001.0289
  • 24. Dimitriev OP, Ogurtsov NA, Pud AA, Smertenko PS, Piryatinski YP et al. Probing of charge and energy transfer in hybrid systems of Aniline−3-Methylthiophene copolymer with CdS and CdSe nanoparticles. Journal of Physical Chemistry C 2008; 112: 14745-14753.
  • 25. Chandrakanthi RLN, Careem AM. Preparation and characterization of CdS and Cu 2 S nanoparticle/polyaniline composite films.Thin Solid Films 2002; 417: 51-56. doi:10.1016/S0040-6090(02)00600-4
  • 26. Nasciment GM, Constantino VRL, Temperini MLA. Spectroscopic characterization of a new type of conducting polymer−clay nanocomposite.Macromolecules 2002; 35: 7535-7537.doi: 10.1021/ma025571l
  • 27. Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E et al. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. Journal of Molecular Liquids 2016; 221: 1029-1033.doi: 10.1016/j.molliq.2016.06.074
  • 28. Sharma BK, Gupta AK, Khare N, Dhawan SK, Gupta HC. Dielectric properties of nano ZnO-polyaniline composite in the microwave frequency range. Journal of Alloy and Compounds 2009; 477: 370-373. doi:10.1016/j.jallcom.2008.10.004
  • 29. Liu G,LiX, Zhao J. Photooxidation pathway of Sulforhodamine-B dependence on the adsorption mode on TiO2 exposed to visible light radiation. Environmental Science Technology 2000; 34: 3982-3990.doi: 10.1021/es001064c
  • 30. Ameen S, Akhtar MS, Kim YS, Yang OB, Shin HS. An effective nanocomposite of polyaniline and ZnO: Preparation, characterizations, and its photocatalytic activity. Colloid Polymer Science 2011; 289: 415-421.
  • 31. Stejskal J, Riede A, Helmstedt M. In situ polymerized polyaniline films 2. dispersion polymerization of aniline in the presence of colloidal silica. Langmuir 2002; 15: 6240-6244.doi: 10.1021/la991414c
  • 32. Zhang QX, Yu ZZ, Xie XL, Maia YW. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier.Polymer 2004; 17: 5985-5994.doi: 10.1016/j.polymer.2004.06.044
  • 33. Zheng W, Angelopoulos M, Epstein AJ, McDiarmid AG. Experimental evidence for hydrogen bonding in polyaniline: mechanism of aggregate formation and dependency on oxidation state. Macromolecules 1997; 30: 2953- 2955.doi: 10.1021/ma9700136
  • 34. Pawar SG, Patil SL, Chougule MA, Mane AT, Jundale DM et al. Synthesis and characterization of polyaniline: TiO2 nanocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials 2010; 59: 777- 785.doi: 10.1080/00914037.2010.483217
  • 35. Olad A, Nosrati R. Preparation, characterization, and photocatalytic activity of polyaniline/ZnO nanocomposite. Reserach on Chemical Intermediates 2012; 38: 323-336.
  • 36. Sahu K, Rahamn K. H, Kar AK. Synergistic effect of polyaniline and ZnO to enhance the photocatalytic of their nanocomposite. Materials Research Express 2019; 6: 095304.doi: 10.1088/2053-1591/ab2c5f
  • 37. Olad A, Nosrati R. Use of response surface methodology for optimization of the photocatalytic degradation of ampicillin by ZnO/polyaniline nanocomposite. Research on Chemical Intermediates 2015; 41: 1351-1363.
  • 38. Li X, Wang D, Cheng G, Luo Q, An J et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental 2008; 2: 7- 273.doi:10.1016/j.apcatb.2007.12.022
  • 39. Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E et al. Influence of chemical structure of dyes of pH and of inorganic salts on their photocatalytic degradation b TiO2 comparison of the efficiency of powder and supported TiO2 . Journal of Photochemistry and Photobiology A: Chemistry.2003; 158: 27-36.
  • 40. Razak S, Nawi MA. Fabrication, characterization and application of a reusable immobilized TiO2 –PANIphotocatalyst plate for the removal of Reactive Red 4 dye. Applied Surface Science 2014; 319: 90-98.doi:10.1016/j.apsusc.2014.07.049
  • 41. He Y. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route. Powder Technology 2004; 147: 59-63.doi:10.1016/j.powtec.2004.09.038
  • 42. Fujishima A, Zhang X. Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie 2006; 9: 750-760.doi: 10.1016/j.crci.2005.02.055
  • 43. Gilja V, Vrban I, Mandič V, Žic M, Hrnjak-Murgič Z. Preparation of a PANI/ZnO composite for efficient photocatalytic degradation of acid blue. Polymers 2018; 10: 1-17.doi:10.3390/polym10090940
  • 44. Pouget JP, Hsu CH, MacDiarmid AG, Epstein AJ. Structural investigation of metallic PAN-CSA and some of its derivatives.Synthetic Metals 1995; 69: 119–120.
  • 45. Nabid MR, Sedghi R, Gholami S, Oskooie HA, Meravi MM. Chemical and enzymatic polymerization of polyaniline/Ag nanocomposites. Photochemistry and Photobiology 2013; 89: 24-32.
  • 46. Lavand AB, Malghe YS. Synthesis, characterization, and visible light photocatalytic activity of nanosized carbon doped zinc oxide. International Journal of Photochemistry 2015; 790153: 1-9.doi: 10.1155/2015/790153
  • 47. Feng W, Sun E, Fuji A, Wu H, Nihara K et al. Synthesis and characterization of photoconducting polyanilineTiO2 nanocomposite. Bulletin of the Chemical Society of Japan 2000; 73: 2627-2633.doi: 10.1246/bcsj.73.2627
  • 48. Khan ZR, Khan MS, Zulfequar M, Khan MS. Optical and structural properties of ZnO thin films fabricated by sol-gel method. Materials Sciences and Applications 2011; 2: 340–345. doi:10.4236/msa.2011.25044
  • 49. Zhao Z. Nanoporous TiO2 /polyaniline composite films with enhanced photoelectrochemical properties. Mater Letters 2014; 130: 150-153.doi: 10.1016/j.matlet.2014.05.099
  • 50. Konstantinou KI, Triantafyllos AA. TiO2 -assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Applied Cataltysis B: Environmental 2004; 49: 1-14. doi: 10.1016/j.apcatb.2003.11.010
  • 51. Eskizeybek V, SarıF, Gulce H, Gulce A, AvcıA. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental 2012;119: 197-206.doi: 10.1016/j.apcatb.2012.02.034
  • 52. Qin R, Ha OL, Liu Y, Zhang Y. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. Chemistry Select 2018; 3: 6286-6293.doi: 10.1016/j.jhazmat.2007.11.114
  • 53. Sivakumar K, Kumar VS, Shim JJ, Haldorai Y. Synthesis and reactivity in inorganic. Metal-Organic and NanoMetal Chemistry 2014; 44: 1414-1420.doi: 10.1080/15533174.2013.809743
  • 54. Nosrati R, Olad A, Maramifar R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environmental Science and Pollution Research 2012; 19: 2291-2299.doi:10.1007/s11356-011-0736-5
  • 55. Wang X, Li Y, Zhao Y, Liu J, Saide T et al. Synthesis of PANI nanostructures with various morphologies from fibers to micromats to disks doped with salicylic acid. Synthetic Metals 2010; 160: 2008-2014.doi: 10.1021/ja028371y
  • 56. Sedenkova I, Trchova M, Stejskal J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water FTIR and Raman spectroscopic studies. Polymer Degradation and Stability 2008; 93: 2147-2157.doi: 10.1016/j.polymdegradstab.2008.08.007
  • 57. Kumar A,Sharma G,Naushad M, Singh P, Kalia S. Polyacrylamide/Ni 0.02 Zn 0.98 O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dye removal. Industrial & Engineering Chemistry Research 2014; 53: 15549-15560.doi: 10.1021/ie5018173
  • 58. Özbay B, Genç N, Özbay İ, Baghaki B, Zor S. Photocatalytic activities of polyaniline-modified TiO2 and ZnO under visible light: an experimental and modeling study. Clean Technology and Environmental Policy 2016; 18: 2591-2601. doi:10.1007/s10098-016-1174-3
  • 59. Behnajady MA, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazard Mater B, 2006; 133: 226-232.doi:10.1016/j.jhazmat.2005.10.022
  • 60. Qiu R, Zhang D, Mo Y, Song L, Brewer E et al.Photocatalytic activity of polymer-modified ZnO under visible light irradiation. Journal of Hazardous Materials 2008; 156: 80-85.doi: 10.1016/j.jhazmat.2007.11.114
  • 61. Wondwossen M, Yadav OP, Tesfahun K. Photo-catalytic removal of Methyl Orange dye by polyaniline modified ZnO using visible radiation. Science, Technology and Arts Research Journal 2014; 3: 93-102.