In situ formed 1-hexyl-3-methylimidazolium hexafluorophosphate for dispersive liquid-liquid microextraction of Pd(II) prior to electrothermal AAS and spectrophotometry

1-Hexyl-3-methylimidazolium hexafluorophosphate was prepared in situ and used as extractant in dispersive liquid-liquid microextraction. Ultra-trace amounts of Pd(II) could be accurately determined by electrothermal atomic absorption spectrometry (ETAAS) and spectrophotometry after extraction by the formed micro-droplets of the ionic liquid phase. 1-(2-Pyridylazo)-2-naphthol was used to produce a hydrophobic palladium complex prior to extraction. The effects of concentrations of reagents, reaction and extraction times, and the other parameters were investigated and optimized. Beer's law was obeyed in the ranges of 0.015-0.900 and 1.50-63.0 ng mL-1 Pd(II) by ETAAS and spectrophotometry, respectively. Under the optimized conditions, the limit of detection (LOD) by ETAAS was 3 ng L-1 with an enrichment factor of 460. The RSD percent was in the range of 1.3%-4.8% for various standard concentrations of Pd(II) in the range of 0.050-40.0 ng mL-1. Most ions did not interfere. The method was successfully applied to the determination of Pd(II) in some water and alloy samples, jewels, and palladium catalysts.

In situ formed 1-hexyl-3-methylimidazolium hexafluorophosphate for dispersive liquid-liquid microextraction of Pd(II) prior to electrothermal AAS and spectrophotometry

1-Hexyl-3-methylimidazolium hexafluorophosphate was prepared in situ and used as extractant in dispersive liquid-liquid microextraction. Ultra-trace amounts of Pd(II) could be accurately determined by electrothermal atomic absorption spectrometry (ETAAS) and spectrophotometry after extraction by the formed micro-droplets of the ionic liquid phase. 1-(2-Pyridylazo)-2-naphthol was used to produce a hydrophobic palladium complex prior to extraction. The effects of concentrations of reagents, reaction and extraction times, and the other parameters were investigated and optimized. Beer's law was obeyed in the ranges of 0.015-0.900 and 1.50-63.0 ng mL-1 Pd(II) by ETAAS and spectrophotometry, respectively. Under the optimized conditions, the limit of detection (LOD) by ETAAS was 3 ng L-1 with an enrichment factor of 460. The RSD percent was in the range of 1.3%-4.8% for various standard concentrations of Pd(II) in the range of 0.050-40.0 ng mL-1. Most ions did not interfere. The method was successfully applied to the determination of Pd(II) in some water and alloy samples, jewels, and palladium catalysts.

___

  • 1. Si, Y.; Hu, Q.; Huang, Z.; Yang, G.; Yin, J. Turk. J. Chem. 2005, 29, 135-140.
  • 2. Ozturk, N.; Bulut, V. N.; Duran, C.; Soylak, M. Desalination 2011, 270, 130-134.
  • 3. Boch, K.; Schuster, M.; Risse, G.; Schwarzer, M. Anal. Chim. Acta 2002, 459, 257-265.
  • 4. Kovacheva, P.; Djingova, R. Anal. Chim. Acta 2002, 464, 7-13.
  • 5. Rastegarzadeh, S.; Purreza, N.; Kiasat, A. R.; Yahyavi, H. Microchim. Acta 2010, 170, 135-140.
  • 6. Chakrapani, G.; Mahanta, P. L.; Murty, D. S. R.; Gomathy, B. Talanta 2001, 53, 1139-1147.
  • 7. Kang, S. W.; Lee, S. S. J. Korean Chem. Soc. 1983, 27, 268-272.
  • 8. Elci, L.; Soylak, M.; Buyuksekerci, E. B. Anal. Sci. 2003, 19, 1621-1624.
  • 9. Tokalioglu, S.; Oymak, T.; Kartal, S. Anal. Chim. Acta 2004, 511, 255-60.
  • 10. Jamali, M. R.; Assadi, Y.; Kozani, R. R.; Shemirani, F. E-J. Chem. 2009, 6, 1077-1084.
  • 11. Borges, D. L. G.; Silva da Veiga, M. A. M.; Frescura, V. L. A.; Welz, B.; Curtius, A. J. J. Anal. At. Spectrom. 2003, 18, 501-507.
  • 12. Ahmadzadeh Kokya, T.; Farhadi, K. J. Hazard. Mater. 2009, 169, 726-733.
  • 13. G¨ok, Y.; Alıcı, B.; C¸ etinkaya, E.; Ozdemir, ¨ ˙ I.; Ozero˘ ¨ glu, O. ¨ Turk. J. Chem. 2010, 34, 187-191.
  • 14. Wen, X.; Deng, Q.; Guo, J. Spectrochim. Acta, Part A 2011, 79, 1941-1945.
  • 15. Martinis, E. M.; Berton, P.; Altamirano, J. C.; Hakala, U.; Wuilloud, R.G. Talanta 2010, 80, 2034-2040.
  • 16. Cruz-Vera, M.; Lucena, R.; Cardenas, S.; Valcarcel, M. J. Chromatogr., A 2009, 1216, 6459-6465.
  • 17. Khani, R.; Shemirani, F.; Majidi, B. Desalination 2011, 266, 238-243.
  • 18. Zhao, R. S.; Wang, X.; Sun, J.; Hu, C.; Wang, X. K. Microchim. Acta 2011, 174, 145-151.
  • 19. He, L.; Zhang, K.; Wang, C.; Luo, X.; Zhang, S. J. Chromatogr., A 2011, 1218, 3595-3600.
  • 20. Berton, P.; Martinis, E. M.; Martinez, L. D.; Wuilloud, R. G. Anal. Chim. Acta 2009, 640, 40-46.
  • 21. Molaakbari, E.; Mostafavi, A.; Afzali, D. J. Hazard. Mater. 2011, 185, 647-652.
  • 22. Huang, K. J.; Jin, C. X.; Song, S. L.; Wei, C. Y.; Liu, Y. M.; Li, J. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2011, 879, 579-584.
  • 23. Baghdadi, M.; Shemirani, F. Anal. Chim. Acta 2009, 634, 186-91. 24. Zeeb, M.; Ganjali, M. R.; Norouzi, P.; Kalaee, M. R. Food Chem. Toxicol. 2011, 49, 1086-1091.
  • 25. Mahpishanian, S.; Shemirani, F. Talanta 2010, 82, 471-476.
  • 26. Yao, C.; Anderson, J. L. Anal. Bioanal. Chem. 2009, 395, 1491-1502.
  • 27. Berton, P.; Wuilloud, R. G. Anal. Methods 2011, 3, 664-672.
  • 28. Liu, J. F.; Chi, Y. G.; Jiang, G. B.; Tai, C.; Peng, J. F.; Hu, J. T. J. Chromatogr., A 2004, 1026, 143-147.
  • 29. Bassett, J.; Denney, R. C.; Jeffery, G. H.; Mendham, J. Textbook of Quantitative Inorganic Analysis, Longman Group Limited, New York, 1989.
  • 30. Swatloski, R. P.; Visser, A. E.; Reichert, W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. Green Chem. 2002, 4, 81-87.
  • 31. Li, Y.; Wang, L. S.; Cai, S. F. J. Chem. Eng. Data 2010, 55, 5289-5293.
  • 32. Gao, J.; Peng, B.; Fan, H.; Kang, J.; Wang, X. Talanta 1997, 44, 837-842.
  • 33. Eskandari, H.; Khoshandam, M. Microchim. Acta 2011, 175, 291-299.
  • 34. Eskandari, H.; Bagherian-Dehaghi,G. Microchim. Acta 2004, 146, 265–270.
  • 35. Pourreza, N.; Rastegarzadeh, S. Anal. Chim. Acta 2001, 437, 273-80.
  • 36. Eskandari, H. Spectrochim. Acta, Part A 2006, 63, 391-397.
  • 37. Rollins, O. W.; Oldham, M. M. Anal. Chem. 1971, 43, 262-265.
  • 38. US-EPA, Methods for Chemical Analysis of Water and Wastes, EPA/600/4-79/020, 1983, Reference Method 253.1, 1983.
  • 39. Shemirani, F.; Kozani, R. R.; Jamali, M. R.; Assadi, Y.; Hosseini, M. R. M. Int. J. Environ. Anal. Chem. 2006, 86, 1105-1112.
  • 40. Yuan, C. G.; Zhang, Y.; Wang, S.; Chang, A. Microchim. Acta 2011, 173, 361-367.
  • 41. Mohamadi, M.; Mostafavi, A. Talanta 2010, 81, 309-313.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A new absorption based CO2 sensor based on Schiff base doped ethyl cellulose

Sevinç Zehra TOPAL, Kadriye ERTEKİIN, Berrin YENİIGÜL, Ayşe ERÇAĞ

Three-component Passerini-Smiles coupling reaction of aldehydes and isocyanides with tropolone catalyzed by silica nanoparticles

Abdolhossain MASSOUDI, Issa AMINI, Ali RAMAZANI And

Design, synthesis, and biological evaluation of indole-based 1,4-disubstituted piperazines as cytotoxic agents

Meriç KÖKSAL AKKOÇ, Mine YARIM YÜKSEL, İrem DURMAZ

Synthesis and cytotoxic evaluation of uracil C-Mannich bases

Hüseyin İSTANBULLU, István ZUPKÓ

Reduction, Mannich reaction and antimicrobial activity evaluation of some new 1,2,4-triazol-3-one derivatives

Seda FANDAKLI, Serap BAŞOĞLU, Hakan BEKTAŞ, Meltem YOLAL

Titrimetric determination of anionic surfactant content in anionic/nonionic surfactant mixture solution by anionic surfactant selective electrode

Junwei WANG, Zhiping DU, Wanxu WANG, Wei XUE

Facile and rapid synthesis of some novel polysubstituted imidazoles by employing magnetic Fe3O4 nanoparticles as a high efficient catalyst

Bahador KARAMI, Khalil ESKANDARI, Abdolmohammad GHASEMI

Determination of ultratrace amounts of dichloro-nitrobenzene and dichloro-nitroaniline in water samples using solidified floating organic drop microextraction (SFODME) and gas chromatography

Shayessteh DADFARNIA, Mohammad MIRZAEI, Ali Mohammad Haji SHABANI

Synthesis and structural characterization of novel square pyramidal oxovanadium(IV) complexes with ligands having N and O donor atoms

Ashok Kumar YADAVA, Hardeo Singh YADAV, Uma Shanker YADAV

Microwave-assisted synthesis, spectroscopy, and crystal structures of [(H2-(4,4'-bipy)]2+ [Cr2O7]2- and one-dimensional polymeric {[Mn(4,4'-bipy)(Cr2O7)(H2O)2]\}n compounds

Hirihattaya PHETMUNG, Munee WATEH, Chaveng PAKAWATCHAI