Immobilized metal ion affinity nanospheres for a-amylase immobilization

Immobilized metal chelate affinity chromatography (IMAC) support was practiced for a-amylase immobilization. Poly(hydroxyethylmethacrylate-methacryloylamidotryptophan)-Ni2+ [p(HEMA-MAT)-Ni2+] nanospheres, average diameter 100 nm, were produced by surfactant free emulsion polymerization. Characterizations of p(HEMA-MAT)-Ni2+ nanospheres were carried out by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). In addition, average particle size, size distribution, and surface charge were specified. The amount of N-methacryloylamidotryptophan (MAT) incorporated to polymer was determined as 1.95 mmol/g polymers by using nitrogen stoichiometry. The specific surface areas of poly(hydroxyethylmethacrylate) [p(HEMA)] and p(HEMA-MAT) nanospheres were calculated as 1856 m2/g and 1914 m2/g, respectively. Protein adsorption increased with increasing initial protein concentration and maximum a-amylase adsorption on p(HEMA-MAT)-Ni2+ nanospheres was observed at pH 4.0. Both free and immobilized a-amylase showed pH optimum at pH 7.0. It was determined that the immobilized a-amylase had better thermostability than the free one. Immobilization of the enzyme did not significantly change the kinetic parameters. The storage stability of a-amylase increased upon immobilization. It was also observed that p(HEMA-MAT)-Ni2+ nanospheres can be repeatedly used for a-amylase immobilization.

Immobilized metal ion affinity nanospheres for a-amylase immobilization

Immobilized metal chelate affinity chromatography (IMAC) support was practiced for a-amylase immobilization. Poly(hydroxyethylmethacrylate-methacryloylamidotryptophan)-Ni2+ [p(HEMA-MAT)-Ni2+] nanospheres, average diameter 100 nm, were produced by surfactant free emulsion polymerization. Characterizations of p(HEMA-MAT)-Ni2+ nanospheres were carried out by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). In addition, average particle size, size distribution, and surface charge were specified. The amount of N-methacryloylamidotryptophan (MAT) incorporated to polymer was determined as 1.95 mmol/g polymers by using nitrogen stoichiometry. The specific surface areas of poly(hydroxyethylmethacrylate) [p(HEMA)] and p(HEMA-MAT) nanospheres were calculated as 1856 m2/g and 1914 m2/g, respectively. Protein adsorption increased with increasing initial protein concentration and maximum a-amylase adsorption on p(HEMA-MAT)-Ni2+ nanospheres was observed at pH 4.0. Both free and immobilized a-amylase showed pH optimum at pH 7.0. It was determined that the immobilized a-amylase had better thermostability than the free one. Immobilization of the enzyme did not significantly change the kinetic parameters. The storage stability of a-amylase increased upon immobilization. It was also observed that p(HEMA-MAT)-Ni2+ nanospheres can be repeatedly used for a-amylase immobilization.

___

  • Schenck, F. W.; Hebeda, R. E. Starch Hydrolysis Products: Worldwide Technology, Production and Applications, VCH, New York, 1992.
  • Windish, W. W.; Mhatre, N. S. Advances in Applied Microbiology, In: Wayne, W. U. Ed., 1965.
  • Fogarty, W. M.; Kelly, C. T. In Topics in Enzyme and Fermentation Biotechnology ; Wiseman, A., Ed., 1979.
  • Vihinen, M.; Mantsala, P. Crit Rev. Biochem. Mol. Biol. 1989, 24, 329–418.
  • Lonsane, B. K.; Ramesh, M. V. Adv. Appl. Microbiol. 1990, 35, 1–56.
  • Nikolov, Z. L.; Reily, P. J. In Biocatalysts for Industry ; Dordick, J. S., Ed. Plenum Press, New York, 1991.
  • Liu, Y.; Jia, S.; Ran, J.; Wu, S. Catal. Commun. 2010, 11, 364–367.
  • Yamamoto, T. In Handbook of Amylases and Related Enzymes: Their Source, Isolation Methods, Properties and Applications; Amylase Research Society of Japan, Ed., Pergamon Press, Oxford, 1988.
  • Bahar, T.; Celebi, S. S. Enzyme Microb. Technol. 2000, 26, 28–33.
  • Roig, M. G.; Kennedy, J. F.; Garaita, M. G. J. Biomater. Sci. Polym. Ed. 1994, 6, 661–673.
  • Ida, J.; Matsuyama, T.; Yamamoto, H. Biochem. Eng. J. 2000, 5, 179–184.
  • Yang, Y.; Chase, H. A. Biotechnol. Appl. Biochem. 1998, 28, 145–154.
  • Chen, J. P.; Sun, Y. M.; Chu, D. H. Biotechnol. Prog. 1998, 14, 473–478.
  • Bryjak, J. Bioprocess Eng. 1995, 13, 177–181.
  • Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Enzyme Microb. Technol. 2007, 40, 1451–1463.
  • Akgol, S.; Ozturk, N.; Denizli, A. J. Appl. Polym. Sci. 2010, 115, 1608–1615.
  • Cong, L.; Kaul, R.; Dissing, U.; Mattiasson, B. J. Biotechnol. 1995, 42, 75–84.
  • Tischer, W.; Kashe, V. Biotechnology 1999, 17, 326–335.
  • Ye, P.; Xu, Z. K.; Che, A. F.; Wu, J.; Seta, F. Biomaterials 2005, 26, 6394–6403.
  • Rebros, V.; Rosenberg, M.; Mlichova, Z.; Kristofıkova, L. Food Chem. 2007, 102, 784–787.
  • Sankalia, V.; Mashru, V.; Sankalia, J. M.; Sutariya, V. B. Eur. J. Pharm. Biopharm. 2007, 65, 215–232.
  • Peng, K.; Hidajat, K.; Udin, M. S. J. Colloid Interface Sci. 2004, 271, 277–283.
  • Choi, S. W.; Kwon, H. Y.; Kim, W. S.; Kim, J. H. Colloids Surf. A 2002, 201, 283–289.
  • Ozturk, N.; Akgol, S.; Arisoy, M.; Denizli, A. Sep. Purif. Technol. 2007, 58, 83–90.
  • Kim, J.; Grate, J. W.; Wang, P. Chem. Eng. Sci. 2006, 61, 1017–1026.
  • Tuzmen, N.; Kalburcu T.; Denizli A. Process Biochem. 2012, 47, 26–33.
  • Porath, J.; Carlson, J.; Olsson, I.; Belfrage, G. Nature 1975, 258, 598–599.
  • Gaberc-Porekar, V.; Menart, V. J. Biochem. Biophys. Methods 2001, 49, 335–360.
  • Arnold, F. H. Bio. Technology 1991, 9, 150–155.
  • Gutierrez, R. E.; Martin del Vale, M.; Galan, M. A. Sep. Purif. Rev. 2007, 36, 71–111.
  • Kubota, N.; Nakagawa, Y.; Eguchi, Y. J. Appl. Polym. Sci. 1996, 62, 1153–1160.
  • Lawal, O. S. Food Chem. 2006, 95, 101–107.
  • Ueda, E. K. M.; Gout, P. W.; Morganti, L. J. Chromatogr. A 2003, 988, 1–23.
  • Mosbach, K. Sci. Am. 1971, 224, 26–33.
  • He, D.; Cai, Y.; Wei, W.; Nie, L.; Yao, S. Biochem. Engineer. J. 2000, 6, 7–11.
  • Tanyolac, D.; Yuruksoy, B. I.; Ozdural, A. R. Biochem. Eng. J. 1998, 2, 179–186.
  • O’Neill, S. P.; Dunnill, P.; Lilly, M. D. Biotechnol. Bioeng. 1971, 13, 337–352.
  • Lopez, G. P.; Ratner, B. D.; Rapoza, R. J.; Horbett, T. A. Macromol. Symp. 1993, 26, 3247–3253.
  • Arica, M. Y.; Senel, S.; Alaeddinoglu, N. G.; Patir, S.; Denizli, A. J. Appl. Polym. Sci. 2000, 75, 1685–1692.
  • Aksoy, S.; Tumturk, H.; Hasirci, N. J. Biotechnol. 1998, 60, 37–46.
  • Turunc, O.; Kahraman, M. V.; Akdemir, Z. S.; Kayaman-Apohan, N.; G¨ ung¨ or, A. Food Chem. 2009, 112, 992–997. Kara, A.; Osman, B.; Yavuz, H.; Be¸sirli N., Denizli A. React. Funct. Polym. 2005, 62, 61–68.
  • Chang, M. Y.; Juang, R. S. Process Biochem. 2004, 39, 1087–1090.
  • Reddy, K. R. C.; Kayastha, A. M. J. Mol. Catal. B: Enzym. 1994, 38, 104–112.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Immobilized metal ion affinity nanospheres for α-amylase immobilization

Adil DENİZLİ, Sinan AKGÖL, Münire Nalan TUZMEN, Tülden KALBURCU

A combined first principles TDDFT and experimental study on the UV-Vis spectra properties of M(p-nitrophenyl azo resorcinol)3 complexes (M: Fe, Cr)

Tuğba TÜĞSÜZ ARİFİOĞLU, Melis EFE ÇINAR, Nuray ŞATIROĞLU

Immobilized metal ion affinity nanospheres for a-amylase immobilization

Tülden KALBURCU, Münire Nalan TÜZMEN

Synthesis and antimicrobial activity of novel 2-[4-(1H-benzimidazol-1-yl)phenyl]-1H-benzimidazoles

Mehmet ALP, Ali Hakan GÖKER, Nurten ALTANLAR

On the peculiar reactivity of a C,N-annelated isoindole core

İaroslav BAGLAI, Valérie MARAVAL, Zoia Vsevolodivna VOITENKO

Experimental investigation of drag reduction effects of polymer additives on turbulent pipe flow using ultrasound Doppler velocimetry

Şerife Zeybek VURAL, Göknur BAYRAM, Yusuf ULUDAĞ

Azolylimidazoles: Synthetic strategies and medicinal applications

Bakr Fathy ABDELWAHAB, Rizk Elsayed KHIDRE

Synthesis, spectral, and thermoanalytical studies on the new heterobimetallic [Mg(II)-Ti(IV)]-m-oxoisopropoxide and its b-diketonates

Rajesh KUMAR

Simulation of impedance spectra of oxalic acid electroreduction to glyoxylic acid: effect of chemical activator, pH, activation energy, and reduction potential

Niyazi Alper TAPAN

Economic synthesis of quinaldinium fluorochromate(VI), (QnFC), and solvent-free periodic acid oxidation of alcohols catalyzed by QnFC

Melek CANBULAT ÖZDEMİR, Hatice Beytiye ÖZGÜN