Hydrotalcite framework stabilized ruthenium nanoparticles (Ru/HTaL): efficient heterogeneous catalyst for the methanolysis of ammonia-borane

Hydrotalcite framework stabilized ruthenium nanoparticles (Ru/HTaL): efficient heterogeneous catalyst for the methanolysis of ammonia-borane

Ruthenium nanoparticles stabilized by a hydrotalcite framework (Ru/HTaL) were prepared by following a2-step procedure comprising a wet-impregnation of ruthenium(III) chloride precatalyst on the surface of HTaL followedby an ammonia-borane (NH3 BH3) reduction of precatalyst on the HTaL surface all at room temperature. Thecharacterization of Ru/HTaL was done by using various spectroscopic and visualization methods including ICP-OES,P-XRD, FTIR, 11 B NMR, XPS, BFTEM, and HRTEM. The sum of the results gained from these analyses has revealedthe formation of well-dispersed and highly crystalline ruthenium nanoparticles with a mean diameter of 1.27 ±0.8 nm onHTaL surface. The catalytic performance of Ru/HTaL in terms of activity, selectivity, and stability was investigated inthe methanolysis of ammonia-borane (NH3 BH3 , AB), which has been considered as one of the most promising chemicalhydrogen storage materials. It was found that Ru/HTaL can catalyse methanolysis of AB effectively with an initialturnover frequency (TOF) value of 392.77 min −1at conversion (>95%) even at room temperature. Moreover, thecatalytic stability tests of Ru/HTaL in AB methanolysis showed that Ru/HTaL acts as a highly stable and reusableheterogeneous catalyst in this reaction by preserving more than 95% of its initial activity even at the 5th recycle.

___

  • 1. Schlapbach L, Zu¨ttel A. Hydrogen-storage materials for mobile applications. Nature 2001; 414 (6861): 353-358. doi: 10.1038/35104634
  • 2. Eberle U, Felderhoff M, Schu¨th F. Chemical and physical solutions for hydrogen storage. Angewandhe Chemical International Edition 2009; 48 (36): 6608-6630. doi: 10.1002/anie.200806293
  • 3. Marder TB. Will we soon be fueling our automobiles with ammonia-borane? Angewandte Chemical International Edition 2007; 46 (43): 8116-8118. doi: 10.1002/anie.200703150
  • 4. Stephens FH, Pons V, Baker RT. Ammonia-borane: the hydrogen source par excellence? Dalton Transactions 2007; 25: 2613-2626. doi: 10.1039/B703053C
  • 5. Wang P, Kang XD. Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Transactions 2008; 40 (40): 5400-5413. doi: 10.1039/b807162d
  • 6. Akbayrak S, Ozcifci Z, Tabak A. Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane. Journal of Colloid and Interface Science 2019; 546: 324-332. doi: 10.1016/j.jcis.2019.03.070
  • 7. Zhao W, Wang RY, Wang Y, Feng JW, Li CC et al. Effect of LDH composition on the catalytic activity of Ru/LDH for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2019; 44 (29): 14820-14830. doi: 10.1016/j.ijhydene.2019.04.052
  • 8. Çalışkan S, Zahmakiran M, Özkar S. Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane. Applied Catalysis B: Environmental 2010; 93 (3-4): 387-394. doi: 10.1016/j.apcatb.2009.10.013
  • 9. Zhang J, Duan YH, Zhu YM, Wang Y, Yao HR et al. Evenly dispersed microspherical amorphous alloy CoxB1-x: Robust and magnetically recyclable catalyst for alcoholyzing ammonia borane to release H2 . Materials Chemistry and Physics 2017; 201: 297-301 doi:10.1016/j.matchemphys.2017.08.040
  • 10. Li QM, Peng SG, Zheng QX, Niu QS. Effect of morphology on catalytic performance of colloid Ru for hydrogen generation from H3 NBH3 alcoholysis: a comparative study. Integrated Ferroelectrics 2016; 170 (1): 73-82. doi: 10.1080/10584587.2016.1168220
  • 11. Ried ACA, Taylor LJ, Geer AM, Williams HEL, Lewis W et al. A highly Active bidentate magnesium catalyst for amine-borane dehydrocoupling: kinetic and mechanistic studies. Chemistry-A European Journal 2019; 25 (27): 6840-6846 doi: 10.1002/chem.201901197
  • 12. Petit JF, Dib E, Gaveau P, Miele P, Alonso B et al. B-11 MASNMR study of the thermolytic dehydrocoupling of two ammonia boranes upon the release of one equivalent of H2 at isothermal conditions. Chemistry Select 2017; 2 (29): 9396-9401. doi: 10.1002/slct.201702227
  • 13. Petit JF, Demirci UB. Discrepancy in the thermal decomposition/dehydrogenation of ammonia borane screened by thermogravimetric analysis. International Journal of Hydrogen Energy 2019; 44 (27): 14201-14206. doi: 10.1016/j.ijhydene.2018.10.148
  • 14. Roy B, Hajari A, Kumar V, Manna J, Sharma P. Kinetic model analysis and mechanistic correlation of ammonia borane thermolysis under dynamic heating conditions. International Journal of Hydrogen Energy 2018; 43 (22): 10386-10395. doi; 10.1016/j.ijhydene.2018.04.124
  • 15. Erguven H, Figen AK, Piskin S. Ammonia borane-boron composites for hydrogen release: thermolysis kinetics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2017; 39 (6): 613-617. doi: 10.1080/15567036.2016.1249809
  • 16. Ramachandran PV, Gagare, PD. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorganic Chemistry 2007; 46 (19): 7810-7817. doi: 10.1021/ic700772a
  • 17. Ozhava D, Kilicaslan NZ, Özkar S. PVP-stabilized nickel(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of hydrazine borane or ammonia borane. Applied Catalysis B: Environmental 2015; 162: 573-582. doi: 10.1016/j.apcatb.2014.07.033 0926-3373
  • 18. Dai HB, Kang XD, Wang P. Ruthenium nanoparticles immobilized in montmorillonite used as catalyst for methanolysis of ammonia borane. International Journal of Hydrogen Energy 2010; 35 (19): 10317-10323. doi: 10.1016/j.ijhydene.2010.07.164
  • 19. Erdogan H, Metin O, Ozkar S. Hydrogen generation from the methanolysis of ammonia borane catalyzed by in-situ generated polymer stabilized ruthenium(0) nanoclusters. Catalysis Today 2011; 170 (1): 93-98. doi: 10.1016/j.cattod.2010.08.024
  • 20. Sun D, Mazumder V, Metin Ö, Sun S. Methanolysis of ammonia borane by CoPd nanoparticles. American Chemical Society Catalysis 2012; 2 (6): 1290-1295. doi: 10.1021/cs300211y
  • 21. Yurderi M, Bulut A, Ertas IE, Zahmakiran M, Kaya M. Supported copper–copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia–borane for chemical hydrogen storage. Applied Catalysis B: Environmental 2015; 165: 169-175. doi: 10.1016/j.apcatb.2014.10.011
  • 22. Yao Q, Huang M, Lu Z, Yang Y, Zhang Y et al. Methanolysis of ammonia borane by shape-controlled mesoporous copper nanostructures for hydrogen generation Dalton Transaction 2015; 44 (3): 1070-1076. doi: 10.1039/C4DT02873B
  • 23. Ozhava D, Ozkar S. Rhodium(0) nanoparticles supported on nanosilica: highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane. Applied Catalysis B: Environmental 2016, 181: 716-726. doi: 10.1016/j.apcatb.2015.08.038
  • 24. Kalidindi SB, Sanyal U, Jagirdar BP. Nanostructured Cu and Cu@Cu 2 O core shell catalysts for hydrogen generation from ammonia-borane. Physical Chemistry Chemical Physics 2008; 10 (38): 5870-5874. doi: 10.1039/B805726E
  • 25. Miyata S. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Minerals 1980; 28 (1): 50-56.
  • 26. Sideris PJ, Nielsen UG, Gan Z, Grey CP. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science, 2008; 321 (5885): 113-117. doi: 10.1126/science.1157581.
  • 27. Cavani F, Trifirü F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catalysis Today 1991; 11: 173-301.
  • 28. Sels BF, De Vos DE, Buntinx M, Pierard F, Kirsch-De Mesmaeker A et al. Layered double hydroxides exchanged with tungstate as biomimetic catalyst for mild oxidative bromination. Nature 1999; 400: 855-857. doi: 10.1038/23674
  • 29. Sels BF, DeVos DE, Jacobs PA. Hydrotalcite-like anionic clays in catalytic organic reactions. Catalysis Reviews Science and Engineering 2001; 43 (4): 443-488. doi: 10.1081/CR-120001809
  • 30. Debecker DP, Gaigneaux EM, Busca G. Exploring, tuning, and exploiting the basicity of hydrotacites for applications in heterogeneous catalysis. Chemistry European Journal 2009; 15 (16): 3920-3935. doi: 10.1002/chem.200900060
  • 31. Xiang X, He W, Xie L, Li F. A mild solution chemistry method to synthesize hydrotalcite-supported platinum nanocrystals for selective hydrogenation of cinnamaldehyde in neat water. Catalysis Science & Technology, 2013; 3 (10): 2819-2827. doi: 10.1039/c3cy00437f
  • 32. He Y, Fan J, Feng J, Luo C, Yang P et al. Pd nanoparticles on hydrotalcite as an efficient catalyst for partial hydrogenation of acetylene: effect of support acidic and basic properties. Journal of Catalysis 2015; 331: 118-127. doi: 10.1016/j.jcat.2015.08.012
  • 33. Corma A, Garcia H, Primo A. Palladium and copper supported on mixed oxides derived from hydrotalcite as reusable solid catalysts for the Sonogashira coupling. Journal of Catalysis 2006; 241 (1): 123-131. doi: 10.1016/j.jcat.2006.04.021
  • 34. Vaerengbergh B, Vieger K, Claeys K, Vanhoutte G, Clercq J et al. The effect of the hydrotalcite structure and nanoparticle size on the catalytic performance of supported palladium nanoparticle catalysts in Suzuki crosscoupling. Applied Catalysis A: General 2018; 560: 236-244. doi: 10.1016/j.apcata.2017.11.018
  • 35. Baguc IB, Celebi M, Karakas K, Ertas IE, Keles MN et al. Nanohydrotalcite supported ruthenium nanoparticles: highly efficient heterogeneous catalyst for the oxidative valorization of lignin model compounds. Chemistry Select 2017; 2 (31): 10191-10198. doi: 10.1002/slct.201700824
  • 36. Yuan Q, Hiemstra K, Meinds TG, Chaabane I, Tang Z et al. Bio-based chemicals: selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalysts. ACS Sustainable Chemistry & Engineering 2019; 7 (5): 4647-4656. doi: 10.1021/acssuschemeng.8b03821
  • 37. He Y, Yang P, Fan J, Liu Y, Du Y et al. Facile and surfactant-free synthesis of supported Pd nanoparticles on hydrotalcite for oxidation of benzyl alcohol. Royal Society of Chemistry Advances 2015; 5 (91): 74907-74915. doi: 10.1039/C5RA14824C
  • 38. Bulut A, Yurderi M, Karatas Y, Say Z, Kivrak H et al. MnOx-promoted PdAg alloy nanoparticles for the additive-free dehydrogenation of formic acid at room temperature. ACS Catalysis 2015; 5 (10): 6099-6110. doi: 10.1021/acscatal.5b01121
  • 39. Yurderi M, Bulut A, Zahmakiran M, Kaya M. Carbon supported trimetallic PdNiAg nanoparticles as highly active, selective and reusable catalyst in the formic acid decomposition. Applied Catalysis B: Environmental 2014; 160: 514-524. doi: 10.1016/j.apcatb.2014.06.004
  • 40. Yurderi M, Bulut A, Caner N, Celebi M, Kaya M et al. Amine grafted silica supported CrAuPd alloy nanoparticles: superb heterogeneous catalysts for the room temperature dehydrogenation of formic acid. Chemical Communications 2015; 51 (57): 11417-11420. doi: 10.1039/C5CC02371H
  • 41. Karatas Y, Bulut A, Yurderi M, Ertas IE, Alal O et al. PdAu-MnOx nanoparticles supported on aminefunctionalized SiO2 for the room temperature dehydrogenation of formic acid in the absence of additives. Applied Catalysis B: Environmental 2016; 180: 586-595. doi: 10.1016/j.apcatb.2015.06.060
  • 42. Albayrak S, Taneroglu O, Ozkar S. Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. New Journal of Chemistry 2017; 41 (14): 6546-6552. doi: 10.1039/C7NJ01035D
  • 43. Baguc IB, Ertas IE, Yurderi M, Bulut A, Zahmakiran M et al. Nanocrystalline metal organic framework (MIL-101) stabilized copper nanoparticles: Highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. Inorganica Chimica Acta 2018; 483: 431-439. doi: 10.1016/j.ica.2018.08.056
  • 44. Ertas IE, Gulcan M, Bulut A, Yurderi M, Zahmakiran M. Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: highly efficient catalytic material in the phenol hydrogenation. Microporous and Mesoporous Materials 2016; 226: 94-103. doi: 10.1016/j.micromeso.2015.12.048
  • 45. Woehrle GH, Hutchison JE, Ozkar S, Finke RG. Analysis of nanoparticle transmission electron microscopy data using a public-domain image-processing program, image. Turkish Journal of Chemistry 2006; 30: 1-13.
  • 46. Khalily M, Yurderi M, Haider A, Bulut A, Patil B et al. Atomic layer deposition of ruthenium nanoparticles on electrospun carbon nanofibers: a highly efficient nanocatalyst for the hydrolytic dehydrogenation of methylamine borane. ACS Applied Materials & Interfaces 2018; 10 (31): 26162-26169. doi: 10.1021/acsami.8b04822
  • 47. Yurderi M, Bulut A, Zahmakiran M, Gulcan M, Ozkar M. Ruthenium(0) nanoparticles stabilized by metalorganic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source. Applied Catalysis B: Environmental 2014; 160-161: 534-541. doi: 10.1016/j.apcatb.2014.06.009
  • 48. Cui X, Surkus AE, Junge K, Toph C, Radnik J et al. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nature Communications 2016; 7: 11326-11334. doi: 10.1038/ncomms11326
  • 49. Morterra C, Zecchina A, Costa G. Structure and Reactivity of Surfaces. New York, NY, USA: Elsevier; 1989.
  • 50. Ozhava D, Ozkar S. Rhodium(0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: a highly active catalyst in hydrogen generation from the methanolysis of ammonia borane. International Journal of Hydrogen Energy 2015; 40 (33): 10491-10501. doi: 10.1016/j.ijhydene.2015.06.144
  • 51. Peng S, Liu J, Zhang J, Wang F. An improved preparation of graphene supported ultrafine ruthenium (0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane. International Journal of Hydrogen Energy 2015; 40 (34): 10856-10866. doi: 10.1016/j.ijhydene.2015.06.113
  • 52. Erdogan H, Metin O, Ozkar S. In situ-generated PVP-stabilized palladium(0) nanocluster catalyst in hydrogen generation from the methanolysis of ammonia–borane. Physical Chemistry Chemical Physics 2009; 11 (44): 10519- 10525. doi: 10.1039/B916459F
  • 53. Sun D, Li P, Yang B, Xu Y, Huang J et al. Monodisperse AgPd alloy nanoparticles as a highly active catalyst towards the methanolysis of ammonia borane for hydrogen generation. RSC Advances 2016; 6 (107): 105940-105947. doi: 10.1039/C6RA21691A
  • 54. Ozhava D, Ozkar S. Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane. Molecular Catalysis 2017; 439: 50-59. doi: 10.1016/j.mcat.2017.06.016
  • 55. Sun JK, Zhan WW, Akita T, Xu Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. Journal of the American Chemical Society 2015; 137 (22): 7063-7066. doi: 10.1021/jacs.5b04029
  • 56. Chen QQ, Li Q, Hou CC, Wang CJ, Peng CY et al. Enhancing electrostatic interactions to activate polar molecules: Ammonia borane methanolysis on a Cu/Co(OH) 2 nanohybrid. Catalysis Science & Technology 2019; 9 (11): 2828- 2835. doi: 10.1039/C9CY00584F
  • 57. Luo W, Cheng W, Hu M, Wang Q, Cheng X at al. Ultrahigh catalytic activity of L-proline-functionalized Rh nanoparticles for methanolysis of ammonia borane. Chemistry & Sustainability Energy & Materials 2018; 12 (2): 535-541. doi: 10.1002/cssc.201802157
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK