Homopolymerization and synthesis of a new methacrylate monomer bearing a boron side group: characterization and determination of monomer reactivity ratios with styrene

Homopolymerization and synthesis of a new methacrylate monomer bearing a boron side group: characterization and determination of monomer reactivity ratios with styrene

Boron methacrylate (BAc) monomer was synthesized via an esterification reaction. Boric acid, neopentyl glycol, and 2-hydroxyethyl methacrylate (HEMA) were reacted to obtain boron-containing acrylic monomer. Characterization was achieved by FT-IR, 13 C NMR, 1 H NMR, and 11 B NMR and the results for the synthesized monomer were compared to those for HEMA. Homopolymer and copolymers with styrene (St) were synthesized via free radical polymerization. The properties of the synthesized styrene copolymers were investigated using several techniques. Monomer reactivity ratios for the studied monomer pair were calculated using the extended Kelen T¨udos method. Copolymerization compositions and reactive ratios showed that the obtained copolymers had random characters. Thermal behaviors of the synthesized polymers were studied by thermal gravimetric analysis and differential scanning calorimetry methods. Boron methacrylate homopolymer showed one glass transition temperature at 73.7 ◦ C. Depending on copolymer composition, the glass transition temperatures of boron methacrylate-styrene copolymers were between 68.4 ◦ C and 81.5 ◦ C. Key words: B

___

  • 1. Mart´ın, C.; Ronda, J. C.; C´adiz, V. Boron-containing novolac resins as flame retardant materials. Polym. Degrad. Stab. 2006, 91, 747-754.
  • 2. Shen, K. K.; Griffin, T. S.: Zinc Borate as a Flame Retardant, Smoke Suppressant, and Afterglow Suppressant in Polymers. In Fire and Polymers; ACS Symposium Series 425; American Chemical Society, 1990; Vol. 425; pp 157-177.
  • 3. Wilkie, C. A.; Morgan, A. B.; Editors. Fire Retardancy of Polymeric Materials, Second Edition; CRC Press: Boca Raton, FL, USA, 2010.
  • 4. K¨oster, R. The Organic Chemistry of Boron, von W. Gerrard. Academic Press, London-New York 1961. 1. Aufl., X, 308 S., 28 Tab., geb. $ 2.15.0. Angew. Chem. 1963, 75, 696-696.
  • 5. Kolel-Veetil, M. K.; Keller, T. M. In Macromolecules Containing Metal and Metal-Like Elements; Wiley: New York, NY, USA, 2006; pp 1-76.
  • 6. J¨akle, F. Lewis acidic organoboron polymers. Coord. Chem. Rev. 2006, 250, 1107-1121.
  • 7. Carr´e, F. H.; Corriu, R. J. P.; Deforth, T.; Douglas, W. E.; Siebert, W. S.; Weinmann, W. A boron-bridged tetrathiaporphyrinogen. Angew. Chem. Int. Ed. 1998, 37, 652-654.
  • 8. Matsumi, N.; Chujo, Y. π-Conjugated organoboron polymers via the vacant p-orbital of the boron atom. Polym. J. (Tokyo, Jpn.) 2008, 40, 77-89.
  • 9. Nicolas, M.; Fabre, B.; Simonet, J. Electrochemical sensing of fluoride and sugars with a boronic acid-substituted bipyridine Fe(II) complex in solution and attached onto an electrode surface. Electrochim. Acta 2001, 46, 1179- 1190.
  • 10. Jaekle, F. Borylated polyolefins and their applications. J. Inorg. Organomet. Polym. Mater. 2005, 15, 293-307.
  • 11. Cheng, F.; Jakle, F. Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym. Chem. 2011, 2, 2122-2132.
  • 12. Ramakrishnan, S.; Chung, T. C. Poly(exo-5-hydroxynorbornene): a functional polymer using metathesis polymerization of an organoborane derivative. Macromol. 1989, 22, 3181-3183.
  • 13. Branger, C.; Lequan, M.; Lequan, R. M.; Large, M.; Kajzar, F. Polyurethanes containing boron chromophores as sidechains for nonlinear optics. Chem. Phys. Lett. 1997, 272, 265-270.
  • 14. Mayo, F. R.; Lewis, F. M. Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J. Am. Chem. Soc. 1944, 66, 1594-1601.
  • 15. Fineman, M.; Ross, S. D. Linear method for determining monomer reactivity ratios in copolymerization. J. Polym. Sci. 1950, 5, 259-262.
  • 16. T¨udos, F.; Kelen, T.; F¨oldes-berezsnich, T.; Turcs´anyi, B. Analysis of linear methods for determining copolymerization reactivity ratios. III. Linear graphic method for evaluating data obtained at high conversion levels. J. Macromol. Sci. Part A Chem. 1976, 10, 1513-1540.
  • 17. T¨ud¨os, F.; Kelenm, T. Analysis of the linear methods for determining copolymerization reactivity ratios. V. Planning of experiments. J. Macromol. Sci. Part A Chem. 1981, 16, 1283-1297.
  • 18. Tidwell, P. W.; Mortimer, G. A. An improved method of calculating copolymerization reactivity ratios. J. Polym. Sci., Part A: Gen. Pap. 1965, 3, 369-387.
  • 19. Mao, R.; Huglin, M. B. A new linear method to calculate monomer reactivity ratios by using high conversion copolymerization data: terminal model. Polymer 1993, 34, 1709-1715.
  • 20. Nair, C. P. R.; Mathew, D.; Ninan, K. N. Free radical copolymerisation of N-(4-hydroxy phenyl) maleimide with vinyl monomers: solvent and penultimate-unit effects. Eur. Polym. J. 1999, 35, 1829-1840.
  • 21. Claudy, P.; Letoffe, J. M.; Camberlain, Y.; Pascault, J. P. Glass transition of polystyrene versus molecular weight. Polym. Bull. (Berlin) 1983, 9, 208-215.
  • 22. Fox, T. G.; Flory, P. J. The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polym. Sci. 1954, 14, 315-319.
  • 23. Fox, T. G., Jr.; Flory, P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 1950, 21, 581-591.
  • 24. Couchman, P. R. The effect of degree of polymerization on glass-transition temperatures. Polym. Eng. Sci. 1981, 21, 377-380.
  • 25. Canak, T. C.; Kaya, K.; Serhatli, I. E. Boron containing UV-curable epoxy acrylate coatings. Prog. Org. Coat. 2014, 77, 1911-1918.
  • 26. Canak, T. C.; Hamuryudan, E.; Serhatli, I. E. Synthesis and characterization of perfluorinated acrylate-methyl methacrylate copolymers. J. Appl. Polym. Sci. 2013, 128, 1450-1461.