Highly luminescent water-dispersed silicon quantum dots for fluorometric determination of oxytetracycline in milk samples

Highly luminescent water-dispersed silicon quantum dots for fluorometric determination of oxytetracycline in milk samples

A fluorescent probe based on silicon quantum dots (SiQDs) was developed for the selective and sensitive detection of oxytetracycline (OTC) via the inner filter effect (IFE). The water-soluble fluorescent SiQD was synthesized based on the reaction of 3-Aminopropyltriethoxysilane (APTES) and sodium citrate as precursors by the one-pot hydrothermal process. The strong fluorescence emission of quantum dots (QDs) was obtained at 440 nm when excited at 350 nm and OTC had a broad absorption band between 200 and 400 nm. The excitation spectrum of SiQDs was completely overlapped with the absorption spectrum of OTC. The light at an excitation wavelength of QDs absorbed by OTC caused a decrease in fluorescence intensity with an increase in the concentration of OTC. Under optimal conditions, the linear concentration range was 0.92–9.2 µg mL1 with a detection limit (LOD; S/N = 3) of 0.19 µg $mL^{–1}$. The proposed method was applied to the determination of OTC in milk samples and satisfactory recoveries (98.8–100.5%) with low RSD % values (0.93–2.31%) were achieved. This simple, selective, sensitive, rapid, and cheap method can be used as a promising tool for OTC analysis in food safety.

___

  • 1. Batchelder AR. Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures. Journal of Environmental Quality 1981; 10 (4): 515-518. doi: 10.2134/jeq1981.00472425001000040019x
  • 2. Chopra I, Roberts M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews 2001; 65 (2): 232-260. doi: 10.1128/mmbr.65.2.232-260.2001
  • 3. He B, Wang L, Dong X, Yan X, Li M, et al. Aptamer-based thin film gold electrode modified with gold nanoparticles and carboxylated multi-walled carbon nanotubes for detecting oxytetracycline in chicken samples. Food Chemistry 2019; 300: 125179. doi: 10.1016/j. foodchem.2019.125179
  • 4. Furusawa N. Clean and rapid liquid chromatographic technique for monitoring of oxytetracycline and sulphadimidine in milk without use of organic solvents. Chromatographia 2003; 57 (5/6): 317-320. doi: 10.1007/bf02492402
  • 5. Kurjogi M, Mohammad YHI, Alghamdi S, Abdelrahman M, Satapute P et al. Detection and determination of stability of the antibiotic residues in cow’s milk. PLoS ONE 2019; 14 (10): e0223475. doi: 10.1371/journal.pone.0223475
  • 6. Wang Z, Wang XY, Tian H, Wei QH, Liu BS et al. High through – put determination of 28 veterinary antibiotic residues in swine wastewater by one – step dispersive solid phase extraction sample cleanup coupled with ultra – performance liquid chromatography – tandem mass spectrometry. Chemosphere 2019; 230: 337-346. doi: 10.1016/j.chemosphere.2019.05.047
  • 7. Marinou E, Samanidou VF, Papadoyannis IN. Development of a high pressure liquid chromatography with diode array detection method for the determination of four tetracycline residues in milk by using QuEChERS dispersive extraction. Separations 2019; 6 (2): 21. doi: 10.3390/separations6020021
  • 8. Li J, Zeng W, Lai X, Wang X, Xu X et al. Selective and sensitive determination of tetracyclines by HPLC with chemiluminescence detection based on a cerium(IV) – methoxylated cypridina luciferin analogue system. Journal of Separation Science 2018; 41 (22): 4115-4121. doi: 10.1002/jssc.201800683
  • 9. Wu XY, Xu ZQ, Huang Z, Shao CY. Large volume sample stacking of cationic tetracycline antibiotics toward 10 ppb level analysis by capillary electrophoresis with UV detection. Electrophoresis 2016; 37 (22): 2963-2969. doi: 10.1002/elps.201600189
  • 10. Paul P, Reynaert J, Sänger-van de Griend C, Adams E, Schepdael AV. Development and validation of a CE method for the determination of tetracyclines with capacitively coupled contactless conductivity detection. Chromatographia 2019; 82 (9): 1395-1403. doi: 10.1007/ s10337-019-03755-4
  • 11. Wang Y, Sun Y, Dai H, Ni P, Jiang S et al. A colorimetric biosensor using $Fe_3O_4$ nanoparticles for highly sensitive and selective detection of tetracyclines. Sensors and Actuators B: Chemical 2016; 236: 621-626. doi: 10.1016/j.snb.2016.06.029
  • 12. Zhu C, Wei L, Yuan P, Xiong L, Cheng X. Determination of tetracyclines by novel singlet – oxygen mediated cerium(IV) chemiluminescence. Instrumentation Science & Technology 2017; 45 (2): 219-231. doi: 10.1080/10739149.2016.1215995
  • 13. Casarrubias-Torres LM, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velazquez T. Mid-infrared spectroscopy and multivariate analysis for determination of tetracycline residues in cow’s milk. Acta Veterinaria Brno 2018; 87 (2): 181-188. doi: 10.2754/avb201887020181
  • 14. Cháfer-Pericás C, Maquieira A, Puchades R, Miralles, J, Moreno A et al. Immunochemical determination of oxytetracycline in fish: Comparison between enzymatic and time-resolved fluorometric assays. Analytica Chimica Acta 2010; 662 (2): 177-185. doi: 10.1016/j. aca.2009.12.044
  • 15. Chen YN, Kong DZ, Liu LQ, Song SS, Kuang H et al. Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody. Food Analytical Methods 2016; 9: 905-914. doi: 10.1007/s12161-015-0262-z
  • 16. Virolainen NE, Pikkemaat MG, Elferink JW, Karp MT. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. Journal of Agricultural and Food Chemistry 2008; 56 (23): 11065-11070. doi: 10.1021/jf801797z
  • 17. Demirhan B, Er Demirhan B, Satana Kara HE. Analysis of acrylamide in meat-based food products by using L-cysteine-capped Mn-doped ZnS quantum dots as a room temperature phosphorescent probe. Fresenius Environmental Bulletin 2019; 28 (4): 2599-2607. doi: 10.1007/ s12161-017-1116-7
  • 18. Satana Kara HE. Novel “turn off-n” sensors for detection of DNA-acrylamide interaction using ZnS quantum dots as a phosphorescent probe. Turkish Journal of Chemistry 2019; 43: 125-136. doi: 10.3906/kim-1807-59
  • 19. Warner JH, Hoshino A, Yamamoto K, Tilley RD. Water-soluble photoluminescent silicon quantum dots. Angewandte Chemie International Edition 2005; 44: 4550-4554. doi: 10.1002/anie.200501256
  • 20. Liu Y, Wang Q, Guo S, Jia P, Shui Y et al. Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sensors and Actuators B: Chemical 2018; 275: 415-421. doi: 10.1016/j.snb.2018.08.073
  • 21. Kang Z, Liu Y, Tsang CHA, Ma DDD et al. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Advanced Materials 2009; 21: 661-664. doi: 10.1002/adma.200801642
  • 22. Chen C, Zhang Y, Zhang Z, He R, Chen Y. Fluorescent determination of glucose using silicon nanodots. Analytical Letters 2018; 51 (8): 2895-2905. doi: 10.1080/00032719.2018.1456547
  • 23. Zhong Y, Sun X, Wang S, Peng F, Bao F et al. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 2015; 9 (6): 5958-5967. doi: 10.1021/acsnano.5b00683
  • 24. Zhong Y, Peng F, Wei X, Zhou Y, Wang J et al. Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angewandte Chemie International Edition 2012; 51: 8485-8489. doi: 10.1002/anie.201202085
  • 25. Lakowicz JR. Principles of Fluorescence Spectroscopy. New York, USA: Plenum Press, 1999.
  • 26. Kubista M, Sjoback R, Eriksson S, Albinsson B. Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 1994; 119: 417-419. doi: 10.1039/AN9941900417
  • 27. Lin J, Wang Q. Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics. RCS Advances 2015; 5: 27458- 27463. doi: 10.1039/C5RA01769F
  • 28. Xu N, Yuan Y, Yin JH, Wang X, Meng L. One-pot hydrothermal synthesis of luminescent silicon-based nanoparticles for highly specific detection of oxytetracycline via ratiometric fluorescent strategy. RSC Advances 2017; 7: 48429-48436. doi: 10.1039/C7RA09338A
  • 29. Zhong Y, Peng F, Bao F, Wang S, Ji X et al. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. Journal of the American Chemical Society 2013; 135: 8350-8356. doi: 10.1021/ja4026227
  • 30. Wu F, Zhang X, Kai S, Zhang M, Wang H et al. Silicon nanoparticles: One-step synthesis of superbright water-soluble silicon nanoparticles with photoluminescence quantum yield exceeding 80%. Advanced Materials Interfaces (2015; 2 (16): 1-11. doi: 10.1002/admi.201570079
  • 31. Xu W, Yu L, Xu H, Zhang S, Xu W et al. Water-dispersed silicon quantum dots for on-off-on fluorometric determination of chromium(VI) and ascorbic acid. Microchimica Acta 2019; 186 (10): 673. doi: 10.1007/s00604-019-3751-8
  • 32. Yoshikawa A. Development and Applications of Wide Bandgap Semiconductors. In Yoshikawa A, Matsunami H, Nanishi Y (eds.). Wide Bandgap Semiconductors. Switzerland: Springer, 2007.
  • 33. Zeghbroeck BV. Principles of Semiconductor Devices, Effective mass in semiconductors. USA: Colorado Press, 2011.
  • 34. Jiajia W, Ruiyi L, Xiaohuan L, Zaijun L. Synthesis of imidazole-functionalized silicon quantum dots as “off-on” fluorescence probe for highly selective and sensitive detection of l-histidine. Sensors and Actuators B: Chemical 2016; 237: 740-748. doi: 10.1016/j.snb.2016.06.157
  • 35. Gil EP, Blazquez LC, Carra RMGM, Misiego AS. Determination of oxytetracycline in urine and human serum by differential pulse polarography. Fresenius’ Zeitschrift für Analytische Chemie 1989; 335: 1002-1004. doi: 10.1007/BF00466397
  • 36. Jelikić-Stankov M, Veselinović D, Malešev D, Radović Z. Spectrophotometric determination of oxytetracycline in pharmaceutical preparations using sodium molybdate as analytical reagent. Journal of Pharmaceutical and Biomedical Analysis 1989; 7 (12): 1565-1570. doi: 10.1016/0731-7085(89)80166-9
  • 37. Ueno R, Uno K, Aoki T. Determination of oxytetracycline in blood-serum by high-performance liquid-chromatography with direct injection. Journal of Chromatography B: Biomedical Sciences and Applications 1992; 573 (2): 333-335. doi: 10.1016/0378-4347(92)80139-H
  • 38. Patyra E, Kowalczyk E, Grelik A, Przeniosło-Siwczyńska M, Kwiatek K. Screening method for the determination of tetracyclines and fluoroquinolones in animal drinking water by liquid chromatography with diode array detector. Polish Journal of Veterinary Sciences 2015; 18 (2): 283-289. doi: 10.1515/pjvs-2015-0037.
  • 39. Sun J, Gan T, Meng W, Shi Z, Zhang Z et al. Determination of oxytetracycline in food using a disposable montmorillonite and acetylene black modified microelectrode. Analytical Letters 2015; 48: 100-115. doi: 10.1080/00032719.2014.930874
  • 40. León-Aguirre K, Hernández-Núñez E, González-Sánchez A, Méndez-Novelo R, Ponce-Caballero C et al. A rapid and green method for the determination of veterinary pharmaceuticals in swine wastewater by fluorescence spectrophotometry. Bulletin of Environmental Contamination and Toxicology 2019; 103: 610-616. doi: 10.1007/s00128-019-02701-2