Characterization and kinetics analysis of the thermal decomposition of the humic substance from hazelnut husk

Characterization and kinetics analysis of the thermal decomposition of the humic substance from hazelnut husk

A humic substance was obtained from hazelnut husk using an alkali extraction. The chemical and morphological structure of the humic matter was characterized via elemental analysis, Fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance, Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), and thermogravimetric-FTIR (TG-FTIR). In addition, thermal analysis measurements TG analysis-differential thermogravimetry/differential scanning calorimetry (TGA-DTG/ DSC) were performed under dynamic air conditions to better determine the origin, physical and chemical structure, and decomposition process of the humic matter. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used to calculate the kinetic parameters of the high-temperature decomposition process. It was observed that the activation energy values were almost constant at certain conversion and temperature intervals. In addition, the structure of the humic substance at different temperatures was also investigated via FTIR analysis. It was found that the obtained humic substance had a very stable structure and decomposed at a high temperature. The stability of the humic matter can be a useful tool in the environmental quality research of soil.

___

  • 1. Souza F, Bragança SR. Extraction and characterization of humic acid from coal for the application as dispersant of ceramic powders. Journal Materials Research and Technology 2018; 7 (3): 254-260. doi: 10.1016/j.jmrt.2017.08.008
  • 2. Jayaganesh S, Senthurpandian VK. Extraction and characterization of humic and fulvic acids from latosols under tea cultivation in South India. Asian Journal of Earth Sciences 2010; 3 (3): 130-135. doi: 10.3923/ajes.2010.130.135
  • 3. Kulikowska D, Klik BK, Gusiatin ZM, Hajdukiewicz K. Characteristics of humic substances from municipal sewage sludge: a case study. Desalination and Water Treatment 2019; 144: 57-64. doi: 10.5004/dwt.2019.23622
  • 4. Çimen F, Ok SS, Kayran C, Demirci Ş, Ozenc DB et al. Characterization of humic materials extracted from hazelnut husk and hazelnut husk amended soils. Biodegradation 2007; 18: 295-301. doi: 10.1007/s10532-006-9063-9
  • 5. Kulikowska D, Bernat K, Wojnowska-Baryła I, Klik B, Michałowska S et al. Stabilizate from autoclaved municipal solid waste as a source of valuable humic substances in a waste circular economy. Waste and Biomass Valorization 2019. doi: org/10.1007/s12649-019-00872-x
  • 6. Unsal T, Ok SS. Description of characteristics of humic substances from different waste materials. Bioresource Technology 20017; 8 (3): 239-242. doi: 10.1016/s0960-8524(01)00019-0
  • 7. Hanca A, Enev V, Hrebeckova T, Klucakova M, Pekar M. Characterization of humic acids in a continuous-feeding vermicomposting system with horse manure. Waste Management 2019; 99: 1-11 doi: 10.1016/j.wasman.2019.08.032
  • 8. Oliveira LC, Ribeiro CA, Rosa AH, Botero WG, Rocha JC et al. Thermal decomposition kinetics of humic substances extracted from Mid-Rio Negro (Amazon Basin) soil samples. Journal of the Brazilian Chemical Society 2009; 20 (6): 1135-1141. doi: 10.1590/S0103- 50532009000600020
  • 9. Sîrbu CE, Cioroianu TM, Rotaru P. About the humic acids and thermal behaviour of some humic acids. Physics AUC 2010; 20 (1): 120- 126.
  • 10. Bikovens O, Telysheva G, Iiyama K. Comparative studies of grass compost lignin and the lignin component of compost humic substances. Chemistry and Ecology 2010; 26: 67-75. doi: 10.1080/02757540.2010.494600
  • 11. Zhou Y, Selvam A, Wong JWC. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource Technology 2014; 168: 229-234. doi: 10.1016/j.biortech.2014.05.070
  • 12. Dogan H, Koral M, Vatansever A, Inan T, Ziypak M et al. New method for the production of barium humate from Turkish coal. Advances in Chemical Engineering Science 2015; 5: 290-298. doi: 10.4236/aces.2015.53029
  • 13. Erdogan S, Baysal A, Akba O, Hamamci C. Interaction of metals with humic acid isolated from oxidized coal. Polish Journal of Environmental Studies 2007; 16 (5): 671-675.
  • 14. Tarhan İ. Hümik maddelerin bazı biyokimyasal kaynaklardan ekstraksiyonu ve akış enjeksiyon sistemleriyle tayin metotlarının geliştirilmesi. MSc, Selçuk University, Konya, Turkey, 2011.
  • 15. Özdemir A. Linyitlerden hümik asit ve fulvik asit üretimi. MSc, Ankara University, Ankara, Turkey, 2011.
  • 16. Rotaru A, Nicolaescu I, Rotaru P, Neaga C. Thermal characterization of humic acids and other components of raw coal. Journal of Thermal Analysis and Calorimetry 2008; 92 (1): 297-300. doi: 10.1007/s10973-007-8816-y
  • 17. Almeida S, Bernabe G, Crespi MS, Ribeiro CA, Lim EN. Relation between kinetic parameters for reactions of organic matter degradation in waste environmental matrix. Journal of Thermal Analysis and Calorimetry 2011; 105: 461-465. doi: 10.1007/s10973-011-1390-3
  • 18. Kućerík J, Kamenárová D, Válková, D, Pekar M, Kislinger J. The role of various compounds in humic acids stability studied by TG and DTA. Journal of Thermal Analysis and Calorimetry 2006; 84 (3): 715-720. doi: 10.1007/s10973-005-7540-8
  • 19. Boguta P, Sokołowska Z, Skic K. Use of thermal analysis coupled with differential scanning calorimetry, quadrupole mass spectrometry and infrared spectroscopy (TG-DSC-QMS-FTIR) to monitor chemical properties and thermal stability of fulvic and humic acids. PLoS One 2017; 1-18. doi: 10.1371/journal.pone.0189653
  • 20. Sartakov MP, Lapshina ED, Osnitsky EM, Zarov EA, Deryabina YM. The thermal stability comparative analysis of humic acids in the sphagnous peat of the Western Siberia Taiga Zone raised bogs. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2016; 1311-1320.
  • 21. Giovanela M, Parlanti E, Soriano-Sierra EJ, Soldi MS, Sierra MMD. Elemental compositions, FT-IR spectra and thermal behaviour of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochemistry Journal 2004; 38: 255-264. doi: 10.2343/ geochemj.38.255
  • 22. Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards 1956; 57 (4): 217-21.
  • 23. Akahira T, Sunose T. Joint convention of four electrical institutes. Science Technology 1971; 16: 22-31.
  • 24. Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B, Polymer Letters 1966; 4 (5): 323-328.
  • 25. Ozawa T. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society Japan 1965; 38: 1881-1886.
  • 26. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica Acta 1999; 340-341: 53-68. doi: 10.1016/S0040-6031(99)00253-1
  • 27. Vyazovkin S, Burnham AK, Criado JM, Maqueda LAP, Popescu C et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 2011; 520: 1-19. doi: 10.1016/j.tca.2011.03.034
  • 28. Fong SS, Seng L, Chong WN, Asing J, Nor MFM et al. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner. Journal of Brazilian Chemical Society 2006; 17 (3): 582-587.
  • 29. Nadi M. Characterization of soil humic substances in Hungarian and Iranian soils. PhD Dissertation, Szent István University, Godollo, Hungary, 2012.
  • 30. Changlung C, Wang X, Jiang H, Hu E. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surface A 2007; 302: 121-125. doi: 10.1016/j.colsurfa.2007.02.014
  • 31. Araujo JR, Archanjo BS, Souza KR, Kwapinski W, Falcão NPS et al. Selective extraction of humic acids from an anthropogenic Amazonian dark earth and from a chemically oxidized charcoal. Biology and Fertility of Soils 2014; 50: 1223-1232. doi: 10.1007/s00374-014-0940-9
  • 32. Chiou CT, Lee JF, Boyd SA. Correspondence. Reply to comment on “the surface area of soil organic matter. Environmental Science and Technology 1992; 26 (2): 404-406. doi: 10.1021/es00026a028
  • 33. Rosa AH, Oliveira LC, Bellin IC, Rocha JC, Romão LPC et al. Influence of alkaline extraction on the characteristics of humic substances in Brazilian soils. Thermochimica Acta 2005; 433: 77-82. doi: 10.1016/j.tca.2005.02.001
  • 34. Purmalis O, Porsnovs D, Klavins M. Differential thermal analysis of peat and peat humic acids. Scientific Journal of Riga Technical University Material Science and Applied Chemistry 2011; 24: 89-94.
  • 35. Yang J, Chen H, Zhao W, Zhou J. TG-FTIR-MS study of pyrolysis products evolving from peat. Journal of Analytical and Applied Pyrolysis 2016; 117: 296-309. doi: 10.1016/j.jaap.2015.11.002
  • 36. Wang K, Deng J, Zhang Y, Wang C. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG-FTIR and in situ IR analysis. Journal of Thermal Analysis and Calorimetry 2018; 132: 591-598. doi: 10.1007/s10973-017-6916-x
  • 37. Stuart B. Infrared Spectroscopy. New York, USA: John Wiley & Sons, 2004, pp.138.
  • 38. Geng Q, Tong X, Wenya GE, Yang C, Wang J et al. Humate-assisted synthesis of MoS2/C nanocomposites via co-precipitation/calcination route for high performance lithium ion batteries. Nanoscale Research Letters 2018; 13 (129): 1-9. doi: 10.1186/s11671-018-2537-y