Biosynthesis of silver nanoparticles using Onosma sericeum Willd. and evaluation of their catalytic properties and antibacterial and cytotoxic activity

Biosynthesis of silver nanoparticles using Onosma sericeum Willd. and evaluation of their catalytic properties and antibacterial and cytotoxic activity

In this study, silver nanoparticle (AgNP) synthesis was carried out using Onosma sericeum Willd. aqueous extract for the first time, with a simple, economical, and green method without the need for any other organic solvent or external reducing or stabilizing agent. A variety of AgNPs, all of different particle sizes, were synthesized by controlling the silver ion concentration, extract volume, temperature, and pH. It was determined that the optimum conditions for AgNP synthesis were 1 mM AgNO3 , pH 8, 25 °C, 20 g/200 mL extract, silver nitrate, and extract ratio 5:1 (v/v). The AgNPs were defined using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The particle size distribution and zeta potential measurements of the AgNPs were measured using the dynamic light scattering (DLS) technique. It was determined that the AgNPs with a particle size of less than 10 nm showed a higher catalytic effect in the reduction of 2-nitrobenzenamine. It was also found that these nanoparticles had a cytotoxic effect on the MCF-7 breast cancer cell line depending on dosage and time. The resulting IC50 values were between 76.63 µg/mL and 169.77 µg/mL. Furthermore, the biosynthesized AgNPs showed effective antibacterial activity against the Acinetobacter baumannii bacteria. The results of the study showed that synthesized AgNPs can have a promising role in biomedical and nanobiotechnology applications.

___

  • 1. Nadaroglu H, Ince S, Alayli GA. Green synthesis of gold nanoparticles using with quail egg yolk and investigation of some using area. Green Processing & Synthesis 2017; 6: 43-48. doi: 10.1515/gps-2016-0091
  • 2. Xu YF, Gao MR, Zheng YR, Jiang J, Yu SH. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenidenanobelts for the electrochemical production of hydrogen. Angewandte Chemie 2013; 52 (33): 8546-8550. doi: 10.1002/anie.201303495
  • 3. Galletto P, Brevet PF, Girault HH, Antoine R, Broyer M. Enhancement of the second harmonic response by adsorbates on gold colloids: the effect of aggregation. The Journal of Physical Chemistry B 2002; 103 (41): 8706-8710. doi: 10.1021/jp991937t
  • 4. Zheng D, Hu C, Gan T, Dang X, Hu S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B: Chemical 2010; 148 (1): 247-252. doi: 10.1016/j.snb.2010.04.031
  • 5. Nadaroğlu H, Alaylı Güngör A, İnce S. Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews 2017; 1 (1): 6-9. doi: injirr.com/article/view/4
  • 6. Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research 2016; 7: 17-28.
  • 7. Mittal AK, Tripathy D, Choudhary A, Aili PK, Chatterjee A et al. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Materials Science and Engineering C 2015; 53: 120-127. doi: 10.1016/j.msec.2015.04.038
  • 8. Naraginti S, Li Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. Journal of Photochemistry and Photobiology B: Biology 2017; 170: 225-234. doi: 10.1016/j. jphotobiol.2017.03.023
  • 9. Ahmed KBA, Senthilnathan R, Megarajan S, Anbazhagan V. Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. Journal of Photochemistry and Photobiology B: Biology 2015; 151: 39-45. doi: 10.1016/j.jphotobiol.2015.07.003
  • 10. Sardana SK, Chava, VSN, Komarala VK. Morphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured silicon. Applied Surface Science 2015; 347: 651-656. doi: 10.1016/j.apsusc.2015.04.145
  • 11. Mathur P, Jha S, Ramteke S, Jain, NK. Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine and Biotechnology 2018; 46: 115-126. doi: 10.1080/21691401.2017.1414825
  • 12. Gajbhiye S, Sakharwade S. Silver nanoparticles in cosmetics. Nanomedicine: Nanotechnology, Biology and Medicine 2010; 6: 570-574. doi: 10.4263/jcdsa.2016.61007
  • 13. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S et al. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 2008; 19: 1-6. doi: 0957-4484/19/24/245705
  • 14. Mallick K, Witcomb MJ, Scurrell MS. Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering. Materials Chemistry and Physics 2005; 90: 221-224. doi: 10.1016/j.matchemphys.2004.10.030
  • 15. Liu YC, Lin LH. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochemistry Communications 2004; 6: 1163-1168. doi: 10.1016/j.elecom.2004.09.010
  • 16. Yu DG. Formation of colloidal silver nanoparticles stabilized by Na+–poly (γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids and Surfaces B: Biointerfaces 2007; 59: 171-178. doi: 10.1016/j.colsurfb.2007.05.007
  • 17. Nadaroglu H, Gungor AG, Ince S, Babagil A. Green synthesis and characterization of platinum nanoparticles using quail egg yolk. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017; 5 (172): 43-47. doi: 10.1016/j.saa.2016.05.023
  • 18. Anastas P, Warner J. Green Chemistry: Theory and practice. Oxford, UK: Oxford University Press, 1998.
  • 19. Schmidt KF. Green Nanotechnology: It’s Easier Than You Think. In: American Chemical Society Meeting, Woodrow Wilson International Center for Scholars. Washington, DC, USA: American Chemical Society, 2006.
  • 20. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B Biointerfaces 2011; 85: 360-365. doi: 10.1016/j. colsurfb.2011.03.009
  • 21. Lim HA, Mishra A, Yun SI. Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by saccharomyces cerevisae. Journal of Nanoscience and Nanotechnology 2011; 11 (1): 518-522. doi: 10.1166/jnn.2011.3266
  • 22. Kalimuthu K, Babu SR, Venkataraman D, Bilal M, Gurunathan S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B Biointerfaces 2008; 65: 150-153. doi: 10.1016/j.colsurfb.2008.02.018
  • 23. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology 2009; 84 (2): 151-157. doi: 10.1002/jctb.2023
  • 24. Behçet L, İlçim A. Paracaryum bingoelianum (Boraginaceae), a new species from Turkey. Turkish Journal of Botany 2015; 39: 334-340. doi: 10.3906/bot-1309-58
  • 25. Vukic MD, Vukovic NL, Djelic GT, Popovic S, Zaric MM et al. Antibacterial and cytotoxic activities of naphthoquinone pigments from Onosma Visianii Clem. Experimental and Clinical Sciences 2017; 16: 73-88. doi: 10.17179/excli2016-762
  • 26. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine 2018; 13: 8013-8024. doi: 10.2147/IJN.S189295
  • 27. Gahlaut A, Chhillar AK. Evaluation of antibacterial potential of plant extracts using resazurin based microtiter dilution assay, International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5: 372-376.
  • 28. Sut S, Pavela R, Kolarcik V, Cappellacci L, Petrelli R et al. Identification of Onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules 2017; 22: 1002-1016. doi: 10.3390/molecules22061002
  • 29. Turunc E, Binzet R, Gumus I, Binzet G, Arslan H. Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide. Materials Chemistry and Physics 2017; 202: 310-319. doi: 10.1016/j.matchemphys.2017.09.032
  • 30. Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugose. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 364: 34-41. doi: 10.1016/j.colsurfa.2010.04.023
  • 31. Sánchez GR, Castilla CL, Gómez NB, García A, Marcos R et al. Leaf extract from the endemic plant Peumus boldus as an effective bioproduct for the green synthesis of silver nanoparticles. Materials Letters 2016; 183: 255-260. doi: 10.1016/j.matlet.2016.07.115
  • 32. Muthu K, Priya S. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017; 179: 66-72. doi: 10.1016/j.saa.2017.02.024
  • 33. Razack SA, Duraiarasan S. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization. In: Hussain CM (editor). Noble Metals Silver. Hoboken, NJ, USA: Wiley, 2020, pp. 371-379.
  • 34. Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry 2014; 7: 1131-1139. doi: 10.1016/j.arabjc.2013.04.007
  • 35. Samari F, Parkhari P, Eftekhar E, Mohseni F, Yousefinejad S. Antioxidant, cytotoxic and catalytic degradation efficiency of controllable phyto-synthesised silver nanoparticles with high stability using Cordia myxa extract. Journal of experimental nanoscience 2019; 14 (1): 141-159. doi: 10.1080/17458080.2019.1687883
  • 36. Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan RS. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microbial Pathogenesis 2018; 114: 402-408. doi: 10.1016/j.micpath.2017.11.052
  • 37. Calhan DS, Gundogan M. Evaluation of changes in the biological activity of Onosma Sericeum Willd (Boraginaceae) based on collection time and extraction solvent, and determination of its mineral and trace element composition. Journal of the Turkish Chemical Society Section A: Chemistry 2019; 6: 355-364. doi: 10.18596/jotcsa.585036
  • 38. Lade BD, Patil AS. Silver nano fabrication using leaf disc of Passiflora foetida Linn. Applied Nanoscience 2017; 7: 181-192. doi: 10.1007/ s13204-017-0558-y
  • 39. Ping Y, Zhang J, Xing T, Chen G, Tao R et al. Green synthesis of silver nanoparticles using grape seed extract and their application for reductive catalysis of Direct Orange 26. Journal of Industrial and Engineering Chemistry 2018; 58: 74-79. doi: 10.1016/j.jiec.2017.09.009
  • 40. Erci F, Cakir-Koc R, Isildak I. Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artificial Cells, Nanomedicine and Biotechnology 2018; 46: 150-158. doi: 10.1080/21691401.2017.1415917
  • 41. Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimensional Systems and Nanostructures 2010; 42: 1417-1424. doi: 10.1016/j.physe.2009.11.081
  • 42. Philip D, Unni C, Aromal SA, Vidhu VK. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011; 78: 899-904. doi: 10.1016/j.saa.2010.12.060
  • 43. Maddinedi SB, Mandal BK, Maddili SK. Biofabrication of size controllable silver nanoparticles – a green approach. Journal of Photochemistry and Photobiology B: Biology 2017; 167: 236-241. doi: 10.1016/j.jphotobiol.2017.01.003
  • 44. Abay AK, Kuo DH, Chen X, Saragih AD. A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes. Chemosphere 2017; 189: 21-31. doi: 10.1016/j.chemosphere.2017.09.018
  • 45. Li K, Zheng Z, Huang X, Zhao G, Feng J et al. Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. Journal of Hazardous Materials 2009; 166: 213-220. doi: 10.1016/j.jhazmat.2008.11.007
  • 46. Astruc D. Nanoparticles and catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
  • 47. Francis S, Joseph S, Koshy EP, Mathew B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artificial Cells, Nanomedicine and Biotechnology 2018; 46 (4): 795-804. doi: 10.1080/21691401.2017.1345921
  • 48. Farooqi ZH, Naseem K, Begum R, Ijaz A. Catalytic reduction of 2-nitroaniline in aqueous medium using silver nanoparticles functionalized polymer microgels. Journal of Inorganic and Organometallic Polymers and Materials 2015; 25: 1554-1568. doi: 10.1007/s10904-015-0275-5
  • 49. Begum R, Naseem K, Ahmed E, Sharif A, Farooqi ZH. Simultaneous catalytic reduction of nitroarenes using silver nanoparticles fabricated in poly(N-isopropylacrylamide-acrylicacid-acrylamide) microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016; 511: 17-26. doi: 10.1016/j.colsurfa.2016.09.076
  • 50. Thirunavoukkarasu M, Balaji U, Behera S, Panda PK, Mishra BK. Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013; 116: 424- 427. doi: 10.1016/j.saa.2013.07.033
  • 51. Cicek S, Gungor AA, Adiguzel A, Nadaroglu H. Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antimicrobial activity. Journal of Chemistry 2015; 1: 1-7. doi: 10.1155/2015/486948
  • 52. Park MVDZ, Neigh AM, Vermeulen JP, Fonteyne LJJ, Verharen HW et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011; 32: 9810-9817. doi: 10.1016/j.biomaterials.2011.08.085
  • 53. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials 2015; 8: 7278-7308. doi: 10.3390/ma8115377
  • 54. Nakkala JR, Mata R, Kumar Gupta A, Rani Sadras S. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. European Journal of Medicinal Chemistry 2014; 85: 784-794. doi: 10.1016/j.ejmech.2014.08.024
  • 55. Mariselvam R, Ranjitsingh AJA, Raja Nanthini UA, Kalirajan K, Padmalatha C et al. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 129: 537-541. doi: 10.1016/j.saa.2014.03.066
  • 56. Teimoori BB, Nikparast Y, Hojatianfar M, Akhlaghi M, Ghorbani, R. Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. Journal of Experimental Nanoscience 2017; 12 (1): 129-139. doi: 10.1080/17458080.2017.1279355
  • 57. Elemike EE, Onwudiwe DC, Mkhize Z. Eco-friendly synthesis of AgNPs using Verbascum thapsus extract and its photocatalytic activity. Materials Letters 2016; 185: 452-455. doi: 10.1016/j.matlet.2016.09.026
  • 58. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D et al. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering C 2016; 58: 36-43. doi: 10.1016/j.msec.2015.08.018
  • 59. Anandalakshmi K, Venugobal J, Ramasamy V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience 2016; 6: 399-408. doi: 10.1007/s13204-015-0449-z
  • 60. Das S, Das J, Samadder A, Bhattacharyya SS, Das D et al. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells.Colloids and Surfaces B: Biointerfaces 2013; 101: 325-336. doi: 10.1016/j.colsurfb.2012.07.008