Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry

Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry

In this study, the electrochemical properties of desloratadine, which is in the second generation antihistamines group, were determined by bismuth film electrode (BiFE) in aqueous and aqueous/surfactant solutions. This compound gave an irreversible and diffusion-controlled reduction peak at about –1.65 V by cyclic voltammetry. It was found that the addition of cationic surfactants (cetyltrimethylammonium bromide (CTAB) increased the reduction current signal of desloratadine, while anionic (sodium dodecylsulfate (SDS) and nonionic (Tween 80) surfactants were found to have an adverse effect. Using linear sweep-cathodic stripping voltammetry, the analytical signal showed a linear correlation with a concentration of 0.1 to 4 µM in 0.04 M Britton–Robinson solution (pH = 8.0) in the presence of 5 mM CTAB, while the detection limit was calculated to be 11.70 nM $(3.64 μgL^{–1})$. This method has been successfully applied for the quantitation of desloratadine in pharmaceutical and urine samples without the need for any separation.

___

  • 1. Mahdy AM, Webster NR. Histamine and antihistamines. Anaesthesia and Intensive Care Medicine 2017; 18 (4): 210-215.
  • 2. Hardman JG, Limbird LE, Gilman AG. Goodman & Gilman’s – The pharmacological basis of therapeutics, McGraw-Hill, New York, 9th edn.1996.
  • 2. Geha RS, Meltzer EO. Desloratadine: A new, nonsedating, oral antihistamine. J Allergy Clin. Immunol 2001;107(4): 751–762.
  • 4. Sutherland FCW, de Jager AD, Badenhorst D, Scanes T, Hundt KHL, Swart KJ, Hundt AF. Sensitive liquid chromatography–tandem mass spectrometry method for the determination of loratadine and its major active metabolite descarboethoxyloratadine in human plasma. Journal of Chromatography A 2001; 914(1-2) : 37-43.
  • 5. See S. Desloratadine for Allergic Rhinitis. Am Fam Physician 2003; 68(10):2015–2016.
  • 6. Yang L, Clement RR, Kantesaria B, Reyderman L, Beaudry F, Grandmaison C, Donato L, Masse R, Rudewicz PJ. Validation of a sensitive and automated 96-well solid-phase extraction liquid chromatography–tandem mass spectrometry method for the determination of desloratadine and 3-hydroxydesloratadine in human plasma. J. Chromatograp. B 2003;792(2): 229–240.
  • 7. Yin OQP, Shi X, Chow MSS. Reliable and specific high-performance liquid chromatographic method for simultaneous determination of loratadine and its metabolite in human plasma. J. Chromatogr. B 2003;796(1): 165–172.
  • 8. Liu L, Wang MQP, Li H. High-performance liquid chromatographic method for the bioequivalence evaluation of desloratadine fumarate tablets in dogs. J. Pharm. Biomed. Anal. 2004; 34(5): 1013–1019.
  • 9. Shen JX, Wang H, Tadros S, Hayes RN. Orthogonal extraction/chromatography and UPLC, two powerful new techniques for bioanalytical quantitation of desloratadine and 3-hydroxydesloratadine at 25 pg/Ml. J. Pharm. Biomed. Anal. 2006;40(3): 689–706.
  • 10. Xu HR, Li XN, Chen WL, Chu NN. Simultaneous determination of desloratadine and its active metabolite 3-hydroxydesloratadine in human plasma by LC/MS/MS and its application to pharmacokinetics and bioequivalence. J. Pharm. Biomed. Anal. 2007;45(4): 659–666.
  • 11. El-Sherbiny DT, El-Enany N, Belal FF, Hansen SH. Simultaneous determination of loratadine and desloratadine in pharmaceutical preparations using liquid chromatography with a microemulsion as eluent. J. Pharm. Biomed. Anal. 2007; 43(4): 1236–1242.
  • 12. Ponnuru VS, Challa BR, Nadendla R. Quantification of desloratadine in human plasma by LC-ESI-MS/MS and application to a pharmacokinetic study. J. Pharm. Anal. 2012; 2(3): 180–187.
  • 13. Patel RB, Patel MR, Mehta JB. Validation of stability indicating high performance liquid chromatographic method for estimation of Desloratadine in tablet formulation. Arab J. Chem. 2017; 10(1): 644–650.
  • 14. Kachoosangi RT, Compton R.G. A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal Bioanal Chem 2007; 387: 2793–2800.
  • 15. Wildgoose GG, Banks CE, Leventis HC, Compton RG. Chemically Modified Carbon Nanotubes for Use in Electroanalysis. Microchim. Acta 2006;152: 187–214.
  • 16. Ensafi AA, Taei M, Khayamian T. A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode. J. Electroanal. Chem. 2009; 633(1): 212-220.
  • 17. Moraes JT, Salamanca-Neto C.A.R, Eisele APP, Coldibeli B, Ceravolo GS, Sartori ER. Fast and sensitive simultaneous determination of antihypertensive drugs amlodipine besylate and ramipril using an electrochemical method: application to pharmaceuticals and blood serum samples. Analytical Methods. 2019; 11: 4006–4013.
  • 18. Eisele APP, Valezi CF, Sartori ER. Exploiting the high oxidation potential of carisoprodol on a boron-doped diamond electrode: an improved method for its simultaneous determination with acetaminophen and caffeine. Analyst 2017;142: 3514–3521.
  • 19. Švorc Ľ, Stanković DM, Mehmeti E, Kalcher K. Sensitive electrochemical determination of yohimbine in primary bark of natural aphrodisiacs using boron-doped diamond electrode. Anal. Methods 2014; 6: 4853–4859.
  • 20. Svítková J, Ignat T, Švorc Ľ, Labuda J, Barek J. Chemical Modification of Boron-Doped Diamond Electrodes for Applications to Biosensors and Biosensing. Crit. Rev. Anal. Chem. 2016; 46(3): 248–256.
  • 21. Aleksić MM, Radulović VL, Kapetanović VP, Savić VM. The Possibility of Simultaneous Voltammetric Determination of Desloratadine and 3-Hydroxydesloratadine. Acta Chimica Slovenica 2010; 57(3): 686–692.
  • 22. Vidya DS, Prasad MS, Priya MV, Roja K, Sreedhar N. Voltammetric determination of desloratadine in pharmaceutical and human urine samples using glassy carbon electrode. Int. J. Pharm. Pharm. Sci. 2014;6(10): 119–122.
  • 23. Öztürk K, Bakirhan NK, Özkan SA, Uslu B. Effect of Catalytically Active Zinc Oxide−Carbon Nanotube Composite on Sensitive Assay of Desloratadine Metabolite. Electoanalysis 2019;32: 50-58.
  • 24. Salamanca-Neto CAR, Olean-Oliveira A, Scremin J. Ceravolo GS,. Dekker RFH, Barbosa-Dekker AM, Teixeira MFS, Sartori ER, Carboxymethyl-botryosphaeran stabilized carbon nanotubes aqueous dispersion: A new platform design for electrochemical sensing of desloratadine. Talanta. 2020;210:1206-1213.
  • 25. Nagao KYH, Salamanca-Neto CAR, Coldibeli B, Sartori ER. A differential pulse voltammetric method for submicromolar determination of antihistamine drug desloratadine using an unmodified boron-doped diamond electrode. Anal. Methods 2020; 12: 1115-1121.
  • 26. Wang J, Lu J, Hocevar S, Farias P, Ogorevc B. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal. Chem. 2000;72(14): 3218- 3222.
  • 27. Wang J. Stripping Analysis at Bismuth Electrodes: A Review, Electroanalysis 2005; 17(15-16): 1341-1346.
  • 28. Economou A. Bismuth-film electrodes: recent developments and potentialities for electroanalysis. Trends Anal Chem 2005; 24(4): 334- 340.
  • 29. Kokkinos C, Economou A. Stripping Analysis at Bismuth-Based Electrodes. Curr. Anal. Chem. 2008; 4 (3): 183-190.
  • 30. Svancara I, Prior C, Hoˇcevar SB, Wang J. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010; 22(13):1405- 1420.
  • 31. Sopha H, Hocevar SB, Pihlar B, Ogorevc B. Bismuth film electrode for stripping voltammetric measurement of sildenafil citrate. Electrochimica Acta. 2012; 60:274-277.
  • 32. De Lima CA, Spinelli A. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochimica Acta. 2013;107:542- 548.
  • 33. Levent A, Altun A, Taş S, Yardim Y, Şentürk Z. Voltammetric Behavior of Testosterone on Bismuth Film Electrode: Highly Sensitive Determination in Pharmaceuticals and Human Urine by Square Wave Adsorptive Stripping Voltammetry. Electroanalysis 2015; 27(5):1219-1228.
  • 34. Fonseca WT, Takeuchi RM, Santos AL. Combining Alkaline Extraction and in Situ Plated Bismuth Film for Reliable Quantification of Zn in Multivitamin Formulations. Electroanalysis 2015; 27(7): 1616-1624.
  • 35. Wang R, Kong D, Yao J, Dou X, Huang Y, Yang S, Yang M. A BiFEs-based SWASV method for fast screening of multi-heavy metals in Xiaochaihu Tang. Microchem. J. 2018; 143: 319-325.
  • 36. Vittal R, Gomathi H, Kim KJ. Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv. Colloid Interface Sci. 2006;.119(1): 55-68.
  • 37. Adamson AW. Physical chemistry of surfaces. 5th ed. New York’ Wiley; 1990.
  • 38. Hiemenz PC. Principles of surface and colloid chemistry. New York’ Marcel Dekker; 1986.
  • 39. Franklin TC, Mathew S. In: Mittall KL. Surfactants in solution, vol. 10. New York Plenum, 1989.
  • 40. Fendler JH, Fendler E. Catalysis in micellar and macromolecular systems. New York Academic Press; 1975.
  • 41. Levent A, Yardım Y, Şentürk Z. Voltammetric behavior of nicotine at pencil graphite electrode and its enhancement determination in the presence of anionic surfactant. Electrochimica Acta 2009; 55: 190-195.
  • 42. Yardım Y, Şentürk Z. Voltammetric behavior of indole-3-acetic acid and kinetin at pencil-lead graphite electrode and their simultaneous determination in the presence of anionic surfactant. Turk. J. Chem. 2011; 35: 413-426.
  • 43. Yardım Y, Levent A, Keskin E, Şentürk Z. Voltammetric behavior of benzo[a]pyrene at boron-doped diamond electrode: A study of its determination by adsorptive transfer stripping voltammetry based on the enhancement effect of anionic surfactant, sodium dodecylsulfate. Talanta 2011; 85: 441-448.
  • 44. Levent A, Altun A, Yardım Y, Şentürk Z. Sensitive voltammetric determination of testosterone in pharmaceuticals and human urine using a glassy carbon electrode in the presence of cationic surfactant. Electrochimica Acta 2014;128: 54-60
  • 45. Levent A, Yardım Y, Şentürk Z. Electrochemical performance of boron-doped diamond electrode in surfactant-containing media for ambroxol determination. Sens. Actuators B Chem. 2014; 203: 517-526.
  • 46. Talay P, Şentürk Z. Voltammetric investigation of antiviral drug valacyclovir at a boron-doped diamond electrode in different electrolyte media: Its determination enhanced by anionic surfactant in pharmaceuticals and biological fluids. Curr. Pharm. Anal. 2017;13(2): 175- 187.
  • 47. Popovic G, Cakar M, Agbaba D. Acid–base equilibria and solubility of loratadine and desloratadine in water and micellar media. J. Pharmaceut. Biomed. 2009; 49: 42–47.
  • 48. Bard A.J, Faulkner LR. Electrochemical Methods: Principles and Applications, 2nd ed.; John Wiley and Sons: New York, USA. 2000.
  • 49. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979; 101: 19-28.
  • 50. Ter Laak A.M,, Tsai R.S, Donne-Op den Kelder G.M, Carrupt P.A, Testa B, Timmerman H. Lipophilicity and hydrogen-bonding capacity of H1-antihistaminic agents in relation to their central sedative side-effects. Eur. J. Pharm. Sci. 1994;.2: 373–384.
  • 51. Cherkaoui I, Monticone V, Vaution C, Treiner C. Surface modification of silica particles by a cationic surfactant: adsolubilization of steroids from aqueous solutions. Int. J. Pharma. 1998;176(1): 111-120.
  • 52. Adak A, Bandyopadhyay M, Pal A. Adsolubilization of organic compounds in surfactant-modified alumina. J. Surf. Science Technol. 2005; 21: 97-112.
  • 53. Lima CA, Spinelli A. Electrochemical behavior of progesterone at an ex situ bismuth film electrode Electrochimica Acta 2013; 107: 542– 548.
  • 54. Tanja Z, Jovanovski V, Hocevar SB. Nanostructured Bismuth Film Electrode for Detection of Progesterone, Sensors 2018; 18: 42-33
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis and characterization of biodegradable palm palmitic acid based bioplastic

Jumat SALIMON, Abd Al-Wali JAPIR, Nadia SALIH

Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry

Günay ÖNAL, Abdulkadir LEVENT, Yalçın ALTUNKAYNAK

Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities

İ. Işıl GÜRTEN İNAL

Graphene preparation and graphite exfoliation

Ahmed A. MOOSA, Mayyadah S. ABED

Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone

Engin ASAV

Synthesis, spectral characterization, and biological studies of 3,5-disubstituted1,3,4-oxadiazole-2(3H)-thione derivatives

Fikrettin ŞAHİN, Tuğçe ÖZYAZICI, Meriç KÖKSAL

High capacity gas capture and selectivity properties of triazatruxene-based ultramicroporous hyper-crosslinked covalent polymer

Ali Enis SADAK

Investigation of performances of commercial diesel oxidation catalysts for $CO,C_3H_6$, andNO oxidation

Deniz ŞANLI YILDIZ, Hande GÜNEŞ, Selmi Erim BOZBAĞ, Can ERKEY, Hüseyin Barkın ÖZENER, Gökhan HİSAR

Synthesis and antioxidant activities of new nickel(II) complexes derived from 4-benzyloxysalicylidene-S-methyl/propyl thiosemicarbazones

Songül EĞLENCE BAKIR

Synthesis of hydroxy benzoin/benzil analogs and investigation of their antioxidant, antimicrobial, enzyme inhibition, and cytotoxic activities

Rezzan ALİYAZICIOĞLU, Şeyda KANBOLAT, Hasan Erdinç SELLİTEPE, Nuran KAHRİMAN, Şengül ALPAY KARAOĞLU, Arif BOZDEVECİ, İnci Selin DOĞAN, Gonca ÇELİK, Ali AYDIN, Nurettin YAYLI, Gözde KILIÇ