Fuel characteristics and combustion behavior of seaweed-derived hydrochars

Fuel characteristics and combustion behavior of seaweed-derived hydrochars

In this study, conversion of seaweeds into hydrochars was investigated with the aim of obtaining a renewableenergy feedstock. The seaweeds Fucus serratus and Alaria esculenta, and a mixture of seaweeds, mainly consisting ofCystoseria sp. and Laurencia sp., were subjected to hydrothermal carbonization (HTC) in subcritical water at threedifferent temperatures: 200, 225, and 250 °C. Fuel characteristics and chemical properties of the derived hydrocharswere determined using the standard fuel analysis and spectroscopic methods. The combustion behavior of seaweeds andhydrochars was examined via nonisothermal thermogravimetric analysis under air atmosphere. The seaweed-derivedhydrochar yields were lower than those of the lignocellulosic-derived hydrochar yields in the literature. Hydrocharsderived from Fucus serratus and Alaria esculenta became increasingly similar to lignite with higher process temperature.Fucus serratus-derived hydrochars had the highest calorific value due to their higher carbon content and significantlylower ash content. HTC converted the seaweeds to hydrochars with improved combustion characteristics observed bylower burnout temperature and higher reactivity during combustion. The slagging index values of hydrochars impliedmedium or high slagging potential during combustion. On the other hand, HTC resulted in hydrochars with reducedfouling index implying medium fouling potential during their combustion due to the significant removal of alkali metals.

___

  • 1. Brennan, L.; Owende, P. Renew. Sustain. Energy Rev. 2010, 14, 557-577.
  • 2. Ross, A. B.; Jones, J. M.; Kubacki, M. L.; Bridgeman, T. Bioresource Technol. 2008, 99, 6494-6504.
  • 3. Goh, C. S.; Lee, K. T. Renew. Sustain. Energy Rev. 2010, 14, 842-848.
  • 4. Rengel, A. In Proceedings of the 8th European symposium of the international farming systems association (IFSA), Clermont-Ferrand, France, 6-10 July 2008; Dedieu, B.; Zasser-Bedoya, S., Eds; pp. 683-692.
  • 5. Jung, K. A.; Lim, S. R.; Kim, Y.; Park, J. M. Bioresource Technol. 2013, 135, 182-190.
  • 6. Vanegas, C. H.; Bartlett, J. Environ. Technol. 2013, 34, 2277-2283.
  • 7. Anastasakis, K.; Ross, A. B. Bioresource Technol. 2011, 102, 4876-4883.
  • 8. Libra, J. A.; Ro, K. S.; Kammann, C.; Funke, A.; Berge, N. D.; Neubauer, Y.; Titirici, M. M.; Fühner, C.; Bens, O.; Kern, J. et al. Biofuels 2011, 2, 71-106.
  • 9. Xu, Q.; Qian, Q.; Quek, A.; Ai, N.; Zeng, G.; Wang, J. ACS Sustainable Chem. Eng. 2013, 1, 1092-1101.
  • 10. Kruse, A.; Funke, A.; Titirici, M. M.. Curr. Opin. Chem. Biol. 2013, 17, 515-521.
  • 11. Liu, F.; Yu, R.; Guo, M. J. Mater. Sci 2017, 52, 1736-1746.
  • 12. Guo, S.; Dong, X.; Wu, T.; Zhu, C. Energy Convers. Manag. 2016, 123, 95-103.
  • 13. Parshetti, G. K.; Chowdhury, S.; Balasubramanian, R. Bioresource Technol. 2014, 161, 310-319.
  • 14. Broch, A.; Jena, U.; Hoekman, S. K.; Langford, J. Energies 2014, 7, 62-79.
  • 15. Koottatep, T.; Fakkaew, K.; Tajai, N.; Pradeep, S. V.; Polprasert, C. Renew. Energ. 2016, 99, 978-985.
  • 16. Fakkaew, K.; Koottatep, T.; Puassayanavin, T.; Polprasert, C. J. Water Sanit. Hyg. Dev. 2015, 5, 439-447.
  • 17. Danso-Boateng, E.; Shama, G.; Wheatley, A. D.; Martin, S. J.; Holdich, R. G. Bioresource Technol. 2015, 177, 318-327.
  • 18. He, C.; Giannis, A.; Wang, J.-Y. Appl.Energy 2013, 111, 257-266.
  • 19. Kantarli, I. C.; Kabadayi, A.; Ucar, S.; Yanık, J. Waste Manage. 2016, 56, 530-539.
  • 20. Reza, M. T.; Freitas, A.; Yang, X.; Hiibel, S.; Lin, H.; Coronella, C. J. Environ. Prog. Sustainable Energy 2016, 35, 1002-1011.
  • 21. Oliveira, I.; Blöhse, D.; Ramke, H. G. Bioresource Technol. 2013, 142, 138-146.
  • 22. Xu, Q.; Qian, Q.; Quek, A.; Ai, N.; Zeng, G.; Wang, J. ACS Sustain. Chem. Eng. 2013, 1, 1092-1101.
  • 23. Smith, A. M.; Ross, A. B. Algal Res. 2016, 16, 1-11
  • 24. Smith, A. M.; Singh, S.; Ross, A. B. Fuel 2016, 169, 135-145.
  • 25. Pala, M.; Kantarli, I. C.; Buyukisik, H. B.; Yanik, J. Bioresource Technol. 2014, 161, 255-262.
  • 26. Chen, J.; Chen, Z.; Wang, C.; Li, X. Mater. Lett. 2012, 67, 365-368.
  • 27. Liu, Z.; Quek, A.; Hoekman, S.K.; Balasubramanian, R. Fuel 2013, 103, 943-949.
  • 28. Missaoui, A.; Bostyn, S.; Belandria, V.; Cagnon, B.; Sarh, B.; Gökalp, I. J. Anal. Appl. Pyrolysis 2017, 128, 281-290.
  • 29. Xiao, L.P.; Shi, Z. J.; Xu, F.; Sun, R.C. Bioresource Technol. 2012, 118, 619-623.
  • 30. Hoekman, S.; Broch, A.; Robbins, C. Energ. Fuel, 2011, 25, 1802-1810.
  • 31. Lynam, J.; Reza, M. T.; Yan, W.; Vásquez, V.; Coronella, C., Biomass Convers. Biorefin. 2015, 5, 173-181.
  • 32. Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M. Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Spectrochim. Acta A 2017, 185, 317-335.
  • 33. Guo, S.; Dong, X.; Zhu, C.; Han, Y.; Ma, F.; Wu, T. Bioresource Technol. 2017, 233, 92-98.
  • 34. Kim, K. H.; Kim, J.; Cho, T.; Choi, J. W. Bioresource Technol. 2012, 118, 158-162.
  • 35. Volpe, M.; Fiori, L. J. Anal. Appl.Pyrol. 2017, 124, 63-72.
  • 36. Sarvaramini, A.; Assima, G.P.; Beaudoin, G.; Larachi, F. Fuel 2014, 115, 749-757.
  • 37. Toptas, A.; Yildirim, Y.; Duman, G.; Yanik, J. Bioresource Technol. 2015, 177, 328-336.
  • 38. Yu, L. J.; Wang, S.; Jiang, X. M.; Wang, N.; Zhang, C. Q. J. Ther. Anal.Calor. 2008, 93, 611-617.
  • 39. Malika, A.; Mohammed, A.; Guhel, Y. Waste Biomass Valor. 2017, https://doi.org/10.1007/s12649-017-0128-2
  • 40. Miranda, M. T.; Arranz, J. I.; Román, S.; Rojas, S.; Montero, I.; López, M.; Cruz, J. A. Fuel Process. Technol. 2011, 92, 278-283.
  • 41. Vamvuka, D.; Sfakiotakis, S. Thermochimica Acta 2011, 526, 192-199.
  • 42. Cai, J.; Li, B.; Chen, C.; Wang, J.; Zhao, M.; Zhang, K. Bioresource Technol. 2016, 220, 305-311.
  • 43. Gil, M.V.; Casal, D.; Pevida, C.; Pis, J. J.; Rubiera, F. Bioresource Technol. 2010, 101, 5601-5608
  • 44. Park, S. W.; Jang, C. H. Energy 2012, 39, 187-195.
  • 45. Munir, S.; Nimmo, W.; Gibbs, B. M. Fuel 2011, 90, 126-135
  • 46. Pazó, J.A.; Granada, E.; Saavedra, Á.; Eguía, P.; Collazo, J. Int. J. Mol. Sci. 2010, 11, 2701-2714.
  • 47. Channiwala, S. A.; Parikh, P.P. Fuel 2002, 81, 1051-1063.
  • 48. Xiang-guo, L.; Bao-guo, M.; Li, Xu.; Zhen-wu, H.; Xin-gang, W. Thermochim. Acta 2006, 441, 79-83.
  • 49. Zhou, L.; Wang, Y.; Huang, Q.; Cai, J. Fuel Process. Technol. 2006, 87, 963-969.