Fabrication of silane-modified magnetic nano sorbent for enhanced ultrasonic wave driven removal of methylene blue from aqueous media: Isotherms, kinetics, and thermodynamic mechanistic studies

Fabrication of silane-modified magnetic nano sorbent for enhanced ultrasonic wave driven removal of methylene blue from aqueous media: Isotherms, kinetics, and thermodynamic mechanistic studies

In this study, we report a simple and economic one-pot synthesis of magnetite $(Fe_3O_4)$ nanostructure and its modification with tetraethyl orthosilicate by coprecipitation method. The synthesized $(Fe_3O_4@SiO_2)$ nano sorbent was applied for enhanced adsorptive removal of methylene blue by ultrasonic wave driven batch experiments. After successful synthesis, the nanostructure was characterized for their physical structure by FT-IR, VSM, TEM, and XRD. For the maximum adsorptive performance of nano sorbent, various parameters were optimized, such as dose, pH, time, concentration, and temperature. The adsorption mechanism was best fitted by Langmuir isotherm with a maximum capacity of 148.69 mg/g, while kinetics best fitted by pseudo-second-order kinetic. The synthesized nano sorbent was successfully applied for enhanced adsorptive removal of toxic methylene blue from aqueous media. The proposed method is promising and effective in terms of simplicity, cost operation, green energy consumption, reproducible, excellent reusability, and magnetically separability with fast kinetic.

___

  • 1. Tuzen, M, A. Sarı, and T.A. Saleh. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. Journal of Environmental Management 2018; 206: 170-177. doi: 10.1016/j.jenvman.2017.10.016
  • 2. Aslam S, Zeng J, Subhan F, Li M, Lyu F et al. In situ one-step synthesis of Fe3O4@ MIL-100 (Fe) core-shells for adsorption of methylene blue from water. Journal of Colloid and Interface science, 2017; 505: 186-195. doi: 10.1016/j.jcis.2017.05.090
  • 3. Teli MD, Nadathur GT. Adsorptive removal of acid yellow 17 (an anionic dye) from water by novel ionene chloride modified electrospun silica nanofibres. Journal of Environmental Chemical Engineering. 2018; 6 (6): 7257-7272. doi: 10.1016/j.jece.2018.10.005
  • 4. Feng J, Zhu J, Lv W, Li J, Yan W. Effect of hydroxyl group of carboxylic acids on the adsorption of Acid Red G and Methylene Blue on TiO2. Chemical Engineering Journal 2015; 269: 316-322. doi: 10.1016/j.cej.2015.01.109
  • 5. Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal 2011; 168 (2): 722- 730. doi:10.1016/j.cej.2011.01.067
  • 6. Senthilkumaar S, Porkodi K, Vidyalakshmi R. Photodegradation of a textile dye catalyzed by sol–gel derived nanocrystalline TiO2 via ultrasonic irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2005;170 (3):225-232. doi: 10.1016/j. jphotochem.2004.07.005
  • 7. Bharathi KS, Ramesh ST. Removal of dyes using agricultural waste as low-cost adsorbents: a review. Applied Water Science 2013; 3 (4): 773-790. doi: 10.1007/s13201-013-0117-y
  • 8. Abdolmohammad-Zadeh H, Ghorbani E, Talleb Z. Zinc–aluminum layered double hydroxide as a nano-sorbent for removal of Reactive Yellow 84 dye from textile wastewater effluents. Journal of the Iranian Chemical Society 2013; 10 (6): 1103-1112. doi: 10.1007/s13738-013- 0255-z
  • 9. Rao RA, Ikram S, Uddin MK. Removal of Cr (VI) from aqueous solution on seeds of Artimisia absinthium (novel plant material). Desalination and Water Treatment 2015; 54 (12): 3358-3371 doi: 10.1080/19443994.2014.908147
  • 10. Rao RA, Kashifuddin M. Pottery glaze an excellent adsorbent for the removal of Cu (II) from aqueous solution. Chinese Journal of Geochemistry 2012; 31 (2):136-146. doi: 10.1007/s11631-012-0560-8. doi: 10.1007/978-3-319-55423-59
  • 11. Uddin M.K, Bushra R. Synthesis and characterization of composite cation-exchange material and its application in removing toxic pollutants. Enhancing Cleanup of Environmental Pollutants 2017; 297-311. doi: 10.5281/zenodo.1436044
  • 12. Sivamani S, Leena GB. Removal of dyes from wastewater using adsorption-a review. International Journal of Biosciences and Technology 2009; 2 (4): 47-51. doi: 10.5281/zenodo.1436044
  • 13. Gao Q, Xu J, Bu XH. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coordination Chemistry Reviews 2019;378:17-31. doi: 10.1016/j.ccr.2018.03.015
  • 14. Hameed BH, El-Khaiary MI. Removal of basic dye from aqueous medium using a novel agricultural waste material: Pumpkin seed hull. Journal of Hazardous Materials 2008; 155 (3): 601-609. doi: 10.1016/j.jhazmat.2007.11.102
  • 15. Wang J, Xu F, Xie WJ, Mei ZJ, Zhang QZ, et al. The enhanced adsorption of dibenzothiophene onto cerium/nickel-exchanged zeolite Y. Journal of Hazardous Materials 2009; 163 (2-3): 538-543. doi: 10.1016/j.jhazmat.2008.07.027
  • 16. Zhang Z, Kong J. Novel magnetic Fe3O4@ C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. Journal of Hazardous Materials 2011; 193: 325-329. doi: 10.1016/j.jhazmat.2011.07.033
  • 17. Minitha CR, Martina Susan Arachy M, Rajendra Kumar RT. Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites. Separation Science and Technology 2018; 53 (14): 2159-2169. doi:10.1080/014963 95.2018.1446986
  • 18. Hernandez JT, Muriel AA, Tabares JA, Alcázar GP, Bolaños. Preparation of Fe3O4 nanoparticles and removal of methylene blue through adsorption. Journal of Physics: Conference Series 2015; IOP Publishing. doi: 10.1088/1742-6596/614/1/012007
  • 19. Qu L, Han T, Luo Z, Liu C, Mei Y et al. One-step fabricated Fe3O4@ C core–shell composites for dye removal: Kinetics, equilibrium and thermodynamics. Journal of Physics and Chemistry of Solids, 2015; 78: 20-27. doi: 10.1016/j.jpcs.2014.10.019
  • 20. Wang G, Liu Q, Chang M, Jang J, Sui W et al. Novel Fe3O4@ lignosulfonate/phenolic core-shell microspheres for highly efficient removal of cationic dyes from aqueous solution. Industrial Crops and Products 2019; 127: 110-118. doi: 10.1016/j.indcrop.2018.10.056
  • 21. Entezari MH, Soltani T. Simultaneous removal of copper and lead ions from a binary solution by sono-sorption process. Journal of Hazardous Materials 2008; 160 (1): 88-93. doi: 10.1016/j.jhazmat.2008.02.108
  • 22. Pang YL, Abdullah AZ. $Fe^{3+}$ doped $TiO_2$ nanotubes for combined adsorption–sonocatalytic degradation of real textile wastewater. Applied Catalysis B: Environmental 2013; 129: 473-481. doi: 10.1016/j.apcatb.2012.09.051
  • 23. Balouch A, Talpur FN, Kumar A, Shah MT, Mahar AM et al. Synthesis of ultrasonic-assisted lead ion imprinted polymer as a selective sorbent for the removal of Pb2+ in a real water sample. Microchemical Journal 2019;146:1160-1168. doi: 10.1016/j.microc.2019.02.037
  • 24. Shah MT, Balouch A, Pathan AA, Mahar AM, Sabir S et al. $SiO_2$ caped $Fe_3O_4$ nanostructures as an active heterogeneous catalyst for4-nitrophenol reduction. Microsystem Technologies 2017; 23 (12): 5745-5758. doi: 10.1007/s00542-017-3431-8
  • 25. Shah MT, Balouch A, Alveroglu E. Sensitive fluorescence detection of Ni2+ ions using fluorescein functionalized $Fe_3O_4$ nanoparticles.Journal of Materials Chemistry C 2018; 6 (5): 1105-1115. doi: 10.1039/C7TC04298A
  • 26. Yan B, Chen Z, Cai L, Chen Z, Fu J et al. Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Applied Surface Science 2015; 356: 39-47. doi: 10.1016/j.apsusc.2015.08.024
  • 27. Saleh TA, Rachman IB, Ali SA. Tailoring hydrophobic branch in polyzwitterionic resin for simultaneous capturing of Hg (II) and methylene blue with response surface optimization. Scientific Reports 2017; 7 (1): 1-15. doi: 10.1038/s41598-017-04624-6
  • 28. Ali I, AL-Hammadi SA, Saleh TA. Simultaneous sorption of dyes and toxic metals from waters using synthesized titania-incorporated polyamide. Journal of Molecular Liquids 2018; 269: 564-571. doi: 10.1016/j.molliq.2018.08.081
  • 29. AL-Hammadi SA, Al-Absi AA, Bin-Dahman OA, Saleh TA. Poly (trimesoyl chloride-melamine) grafted on palygorskite for simultaneous ultra-trace removal of methylene blue and toxic metals. Journal of environmental management 2018; 226:358-364. doi: 10.1016/j. jenvman.2018.08.025
  • 30. Ali SA, Rachman IB, Saleh TA. Simultaneous trapping of Cr (III) and organic dyes by a pH-responsive resin containing zwitterionic aminomethylphosphonate ligands and hydrophobic pendants. Chemical Engineering Journal 2017; 330: 663-674. doi: 10.1016/j. cej.2017.08.003
  • 31. Fu J, Chen Z, Wang M, Liu S, Zhang J et al. Adsorption of methylene blue by a high efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal 2015; 259: 53-61. doi:10.1016/j. cej.2014.07.101
  • 32. Siddiqui SI, Chaudhry SA. Nanohybrid composite Fe2O3-ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water. Journal of Cleaner Production 2019; 223: 849-868. doi: 10.1016/j.jclepro.2019.03.161
  • 33. Arora C, Soni S, Sahu S, Mittal J, Kumar P et al. Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids 2019; 284: 343-352. doi: 10.1016/j.molliq.2019.04.012
  • 34. Abdulla NK, Siddiqui SI, Tara N, Hashmi AA, Chaudhry SA. Psidium guajava leave based magnetic nanocomposite γ-Fe2O3@ GL: A green technology for methylene blue removal from water. Journal of Environmental Chemical Engineering 2019; 7 (6):103423. doi:10.1016/j. jece.2019.103423
  • 35. Knyazeva MK, Shkolin AV, Fomkin AA, Tsivadze AY, Solovtsova OV et al. Synthesis and structural-energy characteristics of Fe-BDC metalorganic frameworks. Protection of Metals and Physical Chemistry of Surfaces 2018; 54 (6): 1004-1009. doi: 10.1134/S2070205118060151