Heavy metal removal with magnetic coffee grain

Heavy metal removal with magnetic coffee grain

The presence of heavy metals in environmental waters having an important place in the industrial waste is a major threat to viability. Heavy metals are transported to humans through the ecological cycle, damaging many tissues and organs. In recent years, agricultural and food waste can be used to remove heavy metals. At the present study, magnetically modified coffee grains which are alternative to conventional particle systems were prepared and heavy metal removal performances were investigated. The coffee grains used were magnetically modified by contact with water-based magnetic fluid. Magnetically modified coffee grains were characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area analysis and electron spin resonance (ESR). Adsorption studies are made with four different heavy metal ions, namely Cu(II), Pb(II), Cd(II) and Zn(II). Adsorption isotherms were determined and heavy metal removal performance of magnetic coffee grains were investigated from synthetic waste water.

___

  • 1. Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM et al. Bioremediation of industrially contaminated soil using compost and plant technology. Journal of Hazardous Materials 2016; 304: 166-172. doi: 10.1016/j.jhazmat.2015.10.061
  • 2. Arivalagan P, Singaraj D, Haridass V, Kaliannan T. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecological Engineering 2014; 71: 728-735. doi: 10.1016/j.ecoleng.2014.08.005
  • 3. Ullah A, Heng S, Munis MFH, Fahad S, Yang X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environmental and Experimental Botany 2015; 117: 28-40. doi: 10.1016/j.envexpbot.2015.05.001
  • 4. Zhou XY, Wang XR. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. Journal of Cleaner Production 2019; 230: 1-10. doi: 10.1016/j.jclepro.2019.117944
  • 5. Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD et al. Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. Journal of Hazardous Materials 2017; 333: 42-53. doi: 10.1016/j. jhazmat.2017.03.037
  • 6. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP. Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management 2016; 181: 817-831. doi: 10.1016/j.jenvman.2016.06.059
  • 7. Tang B, Tong P, Xue KS, Williams PL, Wang JS et al. High-throughput assessment of toxic effects of metal mixtures of cadmium(Cd), lead(Pb), and manganese(Mn) in nematode Caenorhabditis elegans. Chemosphere 2019; 234: 232-241. doi: 10.1016/j.chemosphere.2019.05.271
  • 8. Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods 2020; 30: 167-176. doi: 10.1080/15376516.2019.1701594
  • 9. Al-Enezi G, Hamoda MF, Fawzi N. Ion exchange extraction of heavy metals from wastewater sludges. Journal of Environmental Science and Health, Part A 2004; 39: 455-464. doi: 10.1081/ESE-120027536
  • 10. Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. Journal of Environmental Chemichal Engineering 2017; 5(3): 2782-2799. doi: 10.1016/j.jece.2017.05.029
  • 11. Qin H, Hu T, Zhai Y, Lu N, Aliyeva J. The improved methods of heavy metals removal by biosorbents: A review. Environmental Pollution 2020; 258: 113777. doi: 10.1016/j.envpol.2019.113777
  • 12. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC. New prospects for modified algae in heavy metal adsorption. Trends in Biotechnology 2019; 1255-1268. doi: 10.1016/j.tibtech.2019.04.007
  • 13. Aslıyüce S, Bereli N, Topçu A, Ramteke PW, Denizli A. Indian saffron - turmeric (Curcuma longa) embedded supermacroporous cryogel discs for heavy metal removal. Biointerface Research Applied Chemistry 2019; 9 (5): 4356-4361. doi: 10.33263/BRIAC095.356361
  • 14. Janissen B, Huynh T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling 2018; 128: 110-117. doi: 10.1016/j.resconrec.2017.10.001
  • 15. Nizam Mohamed K, Lai Yee L. Removal of Fe ion from polluted water by reusing spent coffee grounds. Pertanika Journal of Science & Technology 2019; 27: 1077-1090.
  • 16. Safarik I, Horska K, Svobodova B, Safarikova M. Magnetically modified spent coffee grounds for dyes removal. European Food Research and Technology 2012; 234: 345-350. doi: 10.1007/s00217-011-1641-3
  • 17. Çimen D, Bereli N, Denizli A. Metal-chelated magnetic nanoparticles for protein C purification. Separation Science and Technology 2019; 1-10. doi: 10.1080/01496395.2019.1618327
  • 18. Rad AY, Yavuz H, Kocakulak M, Denizli A. Bilirubin removal from human plasma with albumin immobilised magnetic poly(2- hydroxyethyl methacrylate) beads. Macromolecular Bioscience 2003; 3 (9): 471-476. doi: 10.1002/mabi.200350018
  • 19. Senel S, Uzun L, Kara A, Denizli A. Heavy metal removal from synthetic solutions with magnetic beads under magnetic field. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 2008; 45(8): 635-642. doi: 10.1080/10601320802168801
  • 20. Uzun L, Kara A, Osman B, Yılmaz E, Beşirli N et al. Removal of heavy-metal ions by magnetic beads containing triazole chelating groups. Journal of Applied Polymer Science 2009; 114 (4): 2246-2253. doi: 1002/app.30511
  • 21. Feng N, Guo X, Liang S, Zhu Y, Liu J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials 2011; 185: 49-54. doi: 10.1016/j.jhazmat.2010.08.114
  • 22. Lucia R, Jana S, Ivo S, Mirka S, Michaela C et al. Magnetically modified tea for lead sorption. Advanced Science, Engineering and Medicine 2014; 6 (4): 473-476. doi: 10.1166/asem.2014.1527
  • 23. Wang H, Xu X, Ren Z, Gao B. Removal of phosphate and chromium(VI) from liquids by an amine-crosslinked $nano-Fe_3 O_4$ biosorbentderived from corn straw. RSC Advances 2016; 6 (53): 47237-47248. doi: 10.1039/c6ra06801d
  • 24. Jiang R, Tian J, Zheng H, Qi J, Sun S et al. A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution. Journal of Environmental Management 2015; 155: 24-30. doi: 10.1016/j.jenvman.2015.03.009
  • 25. Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics 1981; 17 (2): 1247- 1248. doi: 10.1109/TMAG.1981.1061188
  • 26. Kiwada H, Sato J, Yamada S, Kato Y. Feasibility of magnetic liposomes as a targeting device for drugs. Chemical and Pharmaceutical Bulletin 1986; 34 (10): 4253-4258. doi: 10.1248/cpb.34.4253
  • 27. Yavuz H, Denizli A, Güngüneş H, Safarikova M, Safarik I. Biosorption of mercury on magnetically modified yeast cells. Seperation and Purification Technology 2006; 52 (2): 253-260. doi: 10.1016/j.seppur.2006.05.001
  • 28. Swartz HM, Bolton JR, Borg DC. Biological Applications of Electron Spin Resonance. New York, NY, USA: Wiley-Interscience, 1972.
  • 29. Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials 2010; 184: 126-134. doi: 10.1016/j.jhazmat.2010.08.014
  • 30. Kaikake K, Hoaki K, Sunada H, Dhakal RP, Baba Y. Removal characteristics of metal ions using degreased coffee beans: adsorption equilibrium of cadmium (II). Bioresource Technology 2007; 98: 2787-2791. doi: 10.1016/j.biortech.2006.02.040
  • 31. Ayucitra A, Gunarto C, Kurniawan V, Hartono SB. Preparation and characterisation of biosorbent from local robusta spent coffee grounds for heavy metal adsorption. Chemical Engineering Transactions 2017; 56: 1441-1446. doi: 10.3303/CET1756241
  • 32. Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S. Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Separation and Purification Technology 2004; 35: 11-22. doi: 10.1016/S1383-5866(03)00110-2
  • 33. Oliveira WE, Franca AS, Oliveira LS, Rocha SD. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. Journal of Hazardous Materials 2008; 152: 1073-1081. doi: 10.1016/j.jhazmat.2007.07.085