4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation

4,4’-trimethylenedipiperidine as a nitrogen heterocycle solvent and/or catalyst: Liquid phase tandem Knoevenagel–Michael condensation

Liquid phase tandem Knoevenagel–Michael condensation of various aromatic and heteroaromatic aldehydes with barbituric acid or 2-thiobarbituric acid and malononitrile was studied in a one-pot three-component reaction. For the first time, TMDP was employed as a safe and efficient solvent and/or catalyst in the liquid and aqueous ethanol medium, respectively, for the practical and eco-friendly Knoevenagel–Michael condensation. The reactions were carried out by using greener procedures, including a) the use of TMDP as an N-heterocycle organocatalyst in a green medium including water and ethanol (1:1 v/v) at reflux temperature, and b) the use of TMDP as a dual solvent-catalyst at 65 °C in the absence of any solvent. High to excellent yields of the desired pyrano[2,3-d] pyrimidinones were obtained under the two earlier mentioned conditions. The current methodologies have advantages, including (a) avoiding hazardous, toxic, volatile, and flammable materials and solvents, (b) avoiding tedious processes, harsh conditions, and multiple steps for the preparation of catalysts, (c) using a less toxic and noncorrosive catalyst, (d) minimizing hazardous waste generation and simple workup process, and (e) high recyclability of TMDP. Another important result of this work is that the TMDP can be a promising alternative for toxic, volatile, and flammable base reagents such as piperidine and triethylamine in liquid phase organic syntheses owing to its unique properties such as being less toxic, nonflammable, and nonvolatile, and having a low melting point, broad liquid range temperature, high thermal stability, and safe handling and storage.

___

  • 1. Aghahosseini H, Ramazani A, Ślepokura K, Lis T. The first protection-free synthesis of magnetic bifunctional l-proline as a highly active and versatile artificial enzyme: Synthesis of imidazole derivatives. Journal of Colloid and Interface Science 2018; 511: 222-232. doi: 10.1016/j.jcis.2017.10.020
  • 2. Aghahosseini H, Ramazani A, Jalayer NS, Ranjdoost Z, Souldozi A et al. Vinylphosphonium salt-mediated reactions: A one-pot condensation approach for the highly cis-selective synthesis of N-benzoylaziridines and the green synthesis of 1,4,2-dioxazoles as two important classes of heterocyclic compounds. Organic Letters 2019; 21 (1): 22-26. doi: 10.1021/acs.orglett.8b03388
  • 3. Ahankar H, Ramazani A, Ślepokura K, Lis T, Joo SW. Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chemistry 2018; 18 (12): 3582-3593. doi: 10.1039/C6GC00157B
  • 4. Hamidi H, Heravi MM, Tajbakhsh M, Shiri M, Oskooie HA et al. Synthesis and anti-bacterial evaluation of novel thio- and oxazepino[7,6-b] quinolines. Journal of Iranian Chemistry Society 2015; 12: 2205-2212. doi: 10.1007/s13738-015-0698-5
  • 5. Ramazania A, Khoobi M, Torkaman A, Nasrabadi FZ, Forootanfar H et al. One-pot, four-component synthesis of novel cytotoxic agents 1-(5-aryl-1,3,4-oxadiazol-2-yl)-1-(1H-pyrrol-2-yl)methanamines. European Journal of Medicinal Chemistry 2014; 78: 151-156. doi: 10.1016/j.ejmech.2014.03.049
  • 6. Ali EMH, Abdel-Maksoud MS, Oh CH. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorganic & Medicinal Chemistry 2019; 27 (7): 1159-1194. doi: 10.1016/j.bmc.2019.02.044
  • 7. Haggam RA, Assy MG, Mohamed EK, Mohamed AS. Synthesis of pyrano[2,3‐d]pyrimidine‐2,4‐diones and pyridino[2,3‐d] pyrimidine‐2,4,6,8‐tetraones: Evaluation antitumor activity. Journal of Heterocyclic Chemistry. 2020; 57 (2): 842-850. doi: 10.1002/ jhet.3830
  • 8. Ajmal RB, Rajendra SD, Rupali SS. Potent in vitro antibacterial and antifungal activities of pyrano[2,3-d] pyrimidine derivatives with quantitative yield. International Journal of Pharma and Bio sciences 2014; 5 (1): 422-430.
  • 9. Chabchoub F, Messaad M, Ben Mansour H, Ghdira L, Salem M. Synthesis and antigenotoxic activity of some naphto[2,1-b]pyrano[3,2-e] [1,2,4]triazolo[1,5-c]pyrimidine derivatives. European Journal of Medicinal Chemistry 2007; 42 (5): 715-718. doi: 10.1016/j. ejmech.2006.12.002
  • 10. Shamroukh AH, Zaki MEA, Morsy EMH, Abdel Motti FM, Abdel Megeid EME. Synthesis of pyrazolo[4,3:5,6]pyrano[2,3-d]pyramidine derivatives for antiviral evaluation. Arch. Pharm 2007; 340 (5): 236-243. doi: 10.1002/ardp.200700005
  • 11. Bruno O, Brullo C, Schenons S, Bondavalli F, Ranise A et al. Synthesis, antiplated, and antithrombic activities of new 2-substitued benzopyrano[4,3-d]pyrimidin-4-cycloamines and 4-amino/cycloamino-benzopyrano[4,3-d]pyrimidin-5-ones. Bioorganic & Medicinal Chemistry 2006; 14 (1): 121-130. doi: 10.1016/j.bmc.2005.07.066
  • 12. Agarwal AR, Ashutosh N, Goyal PMS, Chauhan SG. Dihydropyrido [2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorganic & Medicinal Chemistry 2005; 13 (24): 6678-6684. doi: 10.1016/j.bmc.2005.07.043
  • 13. Abd El-Wahab AHF. Activated nitriles in heterocyclic synthesis: synthesis of new[1]benzopyrano[3′,4′:5,6]pyrano[2,3-d]pyrimidine and [1]benzopyrano[3′,4′:5,6]pyrano [3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives with promising antibacterial activity. Acta pharmaceutica 2002; 52 (4): 269-280.
  • 14. Bedair AH, Emam HA, El-Hady NA, Ahmed KAR, Fakery AH et al. Synthesis and antimicrobial activities of novel naphto[2,1-b]pyrane, pyrano[2,3-d]pyrimidine, and pyrano[3,2-e][1,2,4]triazolo[2,3-c]pyrimidine derivatives. IL Farmaco 2001; 56 (12): 965-973. doi: 10.1016/ S0014-827X(01)01168-5
  • 15. Musstazza C, Guidice MRD, Borioni A, Gatta F. Synthesis of pyrazolo[1,5-a]-,1,2,4-triazolo[1,5-a]- and imidazo[1,2-a]pyrimidines related to zaleplon, a new drug for the treatment of insomni. Journal of Heterocyclic Chemistry 2001; 38 (5): 1119-1130. doi: 10.1002/ jhet.5570380516
  • 16. Bedair AH, El-Hady NA, Abd El-Latif MS, Fakery AH, El-Arody AM. 4-Hydroxycoumarin in heterocyclic synthesis, part III: Synthesis of some new pyrano[2,3-d]pyrimidine, 2-substituted[1,2,4]triazolo[1,5-c]pyrimidine, and pyrimido[1,6-b][1,2,4]triazine derivatives. IL Farmaco 2000; 55 (11-12): 708-714. doi: 10.1016/S0014-827X(00)00097-5
  • 17. Aly HM, Kamal MM. Efficient one-pot preparation of novel fused chromeno[2,3-d]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. European Journal of Medicinal Chemistry 2012; 47: 18-23. doi: 10.1016/j.ejmech.2011.09.040
  • 18. Abdel Reheim MAM, Abdel Hafiz IS, Ahmed Elian M. Pyrimidinethione as a building block in heterocyclic synthesis: synthesis of pyrano[2,3-d]pyrimidine, chromeno[2,3-d]pyrimidine, pyrido[3′,2′:5,6]pyrano[2,3-b]pyridine, and pyrimido[5′,4′:5,6]pyrano[2,3-d] pyrimidine derivatives. Heterocyclic Communications 2016; 22 (6): 311-317. doi: 10.1515/hc-2016-0039
  • 19. Chaker A, Najahi E, Nepveu F, Chabchoub F. Microwave-assisted synthesis of chromeno[2,3-d]pyrimidinone derivatives. Arabian Journal of Chemistry 2017; 10: S3040-S3047. doi: 10.1016/j.arabjc.2013.11.045
  • 20. Derbisbekova UB, Datkhayev UM, Kiyekbayeva LN, Zhuravel IA, Omarova RA et al. Synthesis of some derivatives of the 4H-pyrido[4’,3’:5,6] pyrano[2,3-d]pyrimidines. Oriental Journal of Chemistry 2017; 33 (4): 1914-1920. doi: 10.13005/ojc/330437
  • 21. Aly HM, Taha RH, El-deeb NM, Alshehri A. Efficient procedure with new fused pyrimidinone derivatives, Schiff base ligand and its La and Gd complexes by green chemistry. Inorganic Chemistry Frontiers 2018; 5 (2018) 454-473. doi: 10.1039/C7QI00694B
  • 22. Haggam RA, Assy MG, Mohamed EK, Mohamed AS. Synthesis of pyrano[2,3‐d]pyrimidine‐2,4‐diones and pyridino[2,3‐d] pyrimidine‐2,4,6,8‐tetraones: Evaluation antitumor activity. Journal of Heterocyclic Chemistry 2020; 57 (2): 842-850. doi: 10.1002/jhet.3830
  • 23. Ghandi L, Miraki MK, Radfar I, Yazdani E, Heydari A. Formamidinesulfinic acid-functionalized $Fe_3O_4@SiO_2$ as a green and magnetic recyclable catalyst for synthesis of pyrano[2,3-d] pyrimidinone derivatives. ChemistrySelect 2018; 3 (6): 1787-1792. doi: 10.1002/ slct.201702887
  • 24. Bhat AR, Shalla AH, Dongre RS. Dibutylamine (DBA): A highly efficient catalyst for Synthesis of pyrano[2,3-d]pyrimidine derivatives in aqueous media. Journal of Taibah University for Science 2016; 10 (1): 9-18. doi: 10.1016/j.jtusci.2015.03.004
  • 25. Azizian J, Shameli A, Balalaie S, Ghanbari MM, Zomorodbakhsh S et al. The one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives with 1,4-diazabicyclo[2.2.2]octane in aqueous media. Oriental Journal of Chemistry 2012; 28 (1): 327-332.
  • 26. Mobinikhaledi A, Foroughifar N, Bodaghi-Fard MA. Eco-friendly and efficient synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyran derivatives in water. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2010; 40 (3): 179-185. doi: 10.1080/15533171003629121
  • 27. Mashkouri S, Naimi-Jamal MR. Mechanochemical solvent-free and catalyst-free one-pot synthesis of pyrano[2,3-d]pyrimidine2,4(1H,3H)-diones with quantitative yields. Molecules 2009; 14 (1): 474-479. doi: 10.3390/molecules14010474
  • 28. Safaei HR, Shekouhy M, Rahmanpur S, Shirinfeshan A. Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans. Green Chemistry 2012; 14: 1696-1704. doi: 10.1039/c2gc35135h
  • 29. Kidwai M, Jain A, Bhardwaj S. Magnetic nanoparticles catalyzed synthesis of diverse N-heterocycles. Molecular Diversity 2012; 16: 121- 128. doi: 10.1007/s11030-011-9336-z
  • 30. Balalaie B, Abdolmohammadi S, Bijanzadeh HR, Amani AM. Diammonium hydrogen phosphate as a versatile and efficient catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives in aqueous media. Molecular Diversity 2008; 12: 85-91. doi: 10.1007/s11030-008-9079-7
  • 31. Khaligh NG, Mihankhah T, Johan MR. 4,4′-Trimethylenedipiperidine (TMDP): An efficient organocatalyst for the mechanosynthesis of pyrano[4,3-b]pyrans under solid-state conditions. Polycyclic Aromatic Compounds 2020; 40 (5): 1606-1615. doi: 10.1080/10406638.2018.1564679
  • 32. Khaligh NG, Mihankhah T, Johan MR. Synthesis of new low-viscous sulfonic acid-functionalized ionic liquid and its application as a Brönsted liquid acid catalyst for the one-pot mechanosynthesis of 4H-pyrans through the ball milling process. Journal of Molecular Liquids 2019; 277: 794-804. doi: 10.1016/j.molliq.2019.01.024
  • 33. Khaligh NG, Mihankhah T, Johan MR. An alternative, practical, and ecological protocol for synthesis of arylidene analogues of Meldrum’s acid as useful intermediates. Research on Chemical Intermediates 2019; 45: 3291-3300. doi: 10.1007/s11164-019-03796-2
  • 34. Luna OF, Gomez J, Cárdenas C, Albericio F, Marshall SH, Guzmán F. Deprotection reagents in Fmoc solid phase peptide synthesis: Moving away from piperidine? Molecules 2016; 21 (11): 1542. doi: 10.3390/molecules21111542
  • 35. Bararjanian M, Balalaie S, Movassagh B, Amani AM. One-pot synthesis of pyrano[2,3-d]pyrimidinone derivatives catalyzed by L-Proline in aqueous media. Journal of the Iranian Chemical Society 2009; 6: 436-442. doi: 10.1007/BF03245854
  • 36. Ziarani GM, Faramarzi S, Asadi S, Badiei A, Bazl R, Amanlou M. Three-component synthesis of pyrano[2,3-d]-pyrimidine dionederivatives facilitated by sulfonic acid nanoporous silica $(SBA-Pr-SO_3H)$ and their docking and urease inhibitory activity. DARU Journal of Pharmaceutical Science 2013; 21 (1): 3. doi: 10.1186/2008-2231-21-3