Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples

Disposable sensors based on a pencil graphite electrode were described for detection of alkyl phenols. The performances of the disposable bare pencil graphite electrode (PGE) and PGE modified with carbon nanotubes, regarding the cyclic and differential pulse voltammetric determination of 4-nonylphenol, 4-octylphenol, and 4-tert-octylphenol, were compared. Some experimental variables of the electrode surface pretreatment and measurement parameters were optimized. Using a phosphate buffer solution (pH 7.40) as the supporting electrolyte, alkyl phenols gave a well-defined oxidation peak at about 700 mV vs. Ag/AgCl. The detection limits established for each alkyl phenol were: 0.25 mM for 4-octylphenol, 0.42 mM for 4-nonylphenol, and 0.77 mM for 4-tert-octylphenol. This method is suitable for the direct determination of the total content of these pollutants found at micromolar levels in water samples. The results obtained applying this method are in good agreement with those obtained by high-performance liquid chromatography. The developed sensor has shown some advantages such as low cost, sensitivity, and capability to generate reproducible results using a simple and direct electrochemical protocol. By using this type of commonly available disposable working electrode and a portable electrochemical analysis system, the developed method can be applied to the determination of alkyl phenols directly at the sampling point.

Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples

Disposable sensors based on a pencil graphite electrode were described for detection of alkyl phenols. The performances of the disposable bare pencil graphite electrode (PGE) and PGE modified with carbon nanotubes, regarding the cyclic and differential pulse voltammetric determination of 4-nonylphenol, 4-octylphenol, and 4-tert-octylphenol, were compared. Some experimental variables of the electrode surface pretreatment and measurement parameters were optimized. Using a phosphate buffer solution (pH 7.40) as the supporting electrolyte, alkyl phenols gave a well-defined oxidation peak at about 700 mV vs. Ag/AgCl. The detection limits established for each alkyl phenol were: 0.25 mM for 4-octylphenol, 0.42 mM for 4-nonylphenol, and 0.77 mM for 4-tert-octylphenol. This method is suitable for the direct determination of the total content of these pollutants found at micromolar levels in water samples. The results obtained applying this method are in good agreement with those obtained by high-performance liquid chromatography. The developed sensor has shown some advantages such as low cost, sensitivity, and capability to generate reproducible results using a simple and direct electrochemical protocol. By using this type of commonly available disposable working electrode and a portable electrochemical analysis system, the developed method can be applied to the determination of alkyl phenols directly at the sampling point.

___

  • Frenzel, W.; Frenzel, J. O.; Moeler, J. Anal. Chim. Acta 1992, 261, 253–259.
  • Yi, H.; Wu, K.; Hu, S.; Cui. D. Talanta 2001, 55, 1205–1210.
  • Cruz Moraes, F.; Tanimoto, S. T.; Salazar-Banda, G. R.; Spinola Machado, S. A.; Mascaroa, L. H. Electroanal. 2009, 21, 1091–1098.
  • European Directive 2003/53/EC.
  • US EPA Priority Pollutant List on EPA Website (http://water.epa.gov/scitech/methods/cwa/pollutants.cfm). US Environmental Protection Agency (EPA), 2006
  • ISO 18857-1, Water Quality - Determination of Selected Alkylphenols - Part 1, 2005.
  • Zgola-Grze´skowiak, A.; Grze´skowiak, T.; Rydlichowski, R.; Lukaszewski, Z. Chemosphere 2009, 75, 513–518. Brugnera, M. F.; Gon¸calves Trindade, M. A.; Boldrin Zanoni, M. V. Anal. Lett. 2010, 43, 2823–2836.
  • Ngundi, M. M.; Sadik, O. A.; Yamagushi, T.; Suye, S. I. Electrochem. Commun. 2003, 5, 61–67.
  • Evtugyn, G. A.; Eremin, S.A.; Shaljamova, R. P.; Ismagilova, A.R.; Budnikov, H. C. Biosens. & Bioelectron. 2006, 22, 56–62.
  • Vega, D.; Agui, L.; Gonzalez-Cortes, A.; Yanez-Sedeno, P.; Pingarron, J. M. Talanta 2007, 71, 1031–1038.
  • Huang, J.; Zhang, X.; Liu, S.; Lin, Q.; He, X.; Xing, X.; Lian, W.; Tang, D. Sens. & Actuat. B: Chemical 2011, 152, 292–298.
  • Yang, C. H. Microchim. Acta 2004, 148, 87–92.
  • Huang, W.; Yang, C. H.; Zhang, S. Anal. Bioanal. Chem. 2003, 375, 703-707.
  • Stuart, E. J. E.; Pumera, M. J. Phys. Chem. C 2011, 115, 5530–5534.
  • Gurban, A. M.; Rotariu, L.; Baibarac, M.; Baltog, I.; Bala, C. Talanta, 2011, 85, 2007–2013.
  • Yang, P.; Li, L.; Cai, H.; Song, H.; Wan, Q. Conference on Environmental Pollution and Public Health, 2010, 1–2, 908–911.
  • Aoki, K.; Okamoto, T.; Kaneko, H.; Nozaki, K.; Negishi, A. J. Electroanal. Chem. 1989, 263, 323–333.
  • Blum, D.; Leyffer, W.; Holze, R. Electroanal. 1996, 8, 296–297.
  • Bond, A. M.; Mahon, P. J.; Schiewe, J.; Beckett, V. V. Anal. Chim. Acta 1997, 345, 67–74.
  • Majidi, M. R.; Asadpour-Zeynali, K.; Hafezi, B. Electrochim. Acta 2009, 54, 1119–1126.
  • Reza Majidi, M.; Asadpour-Zeynali, K.; Hafezi, B. Int. J. Electrochem. Sci. 2011, 6, 162–170
  • Kakizaki, T.; Hasebe, K. Fresenius J. Anal. Chem. 1998, 360, 175–178.
  • Demetriades, D.; Economou, A.; Voulgaropoulos, A. Anal. Chim. Acta 2004, 519, 167–172.
  • Rashmi, B. B. P.; Tiwari, M. P.; Sharma, P. S. Sens. & Actuat. B: Chemical 2010, 146, 321–330.
  • Gao, W.; Song, J.; Naiying, W. J. Electroanal. Chem. 2005, 576, 1–7.
  • ¨ Ozcan, L.; S ¸ahin, Y. Sens. & Actuat. B: Chemical, 2007, 127, 362–369.
  • Levent, A.; Yardim, Y.; Senturk, Z. Electrochim. Acta 2009, 55, 190–195.
  • Aladag, N.; Trnkova, L.; Kourilova, A.; Ozsoz, M.; Jelen, F. Electroanal. 2010, 22, 1675–1681.
  • Keskin, E.; Yardım, Y.; S¸ent¨ urk, Z. Electroanal. 2010, 22, 1191–1199.
  • ¨ Ozcan, A.; S ¸ahin, Y. Biosens. & Bioelectron. 2010, 25, 2497–2502.
  • ¨ Ozcan, A.; S ¸ahin, Y. Electroanal. 2009, 21, 2363–2370.
  • Buratti, S.; Scampicchio, M.; Giovanelli, G.; Mannino, S. Talanta 2008, 75 312–316.
  • King, D.; Friend, J.; Kariuki, J. J. Chem. Educ. 2010, 87, 507–509.
  • Wang, J.; Kawde, A.; Sahlin, E. Analyst 2000, 125, 5–7.
  • Yardım, Y.; Keskin, E.; Levent, A.; ¨ Ozs¨ oz, M.; Sent¨ urk, Z. Talanta 2010, 80, 1347–1355.
  • Ozkan-Ariksoysal, D.; Tezcanli, B.; Kosova, B.; Ozsoz, M. Anal. Chem. 2008, 80, 588–596.
  • ISO 5667–10. Water quality—sampling—part 10. Guidance on sampling of waste waters. International Standards for Business, Government and Society, 1992.
  • Cruceru, I.; Florescu, A.; Badea, I. A.; Vladescu, L. Environ. Monit. Assess. DOI 10.1007/s10661-011-2403-1. Allen, B. W.; Piantadosi, C. A. Nitric Oxide 2003, 8, 243–252.
  • Iotov, P. I.; Kalcheva, S. V. J. Electroanal. Chem. 1998, 442, 19–26.
  • Andreescu, S.; Andreescu, D.; Sadik, O. A. Electrochem. Commun. 2003, 5, 681–688. de Carvalho, R. M.; Kubota, L. T.; Rath, S. J. Electroanal. Chem. 2003, 548, 19–26.
  • Ferreira, M.; Varela, H.; Torresi, R. M.; Tremiliosi-Filho, G. Electrochim. Acta 2006, 52, 434–442.
  • Kuramitz, H.; Saitoh, J.; Hattori, T.; Tanaka, S. Water Res. 2002, 36, 3323–3329.
  • Green, J. M. Analytical Chemistry News & Features 1996, 1, 305A–309A. 100
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples

İulia Gabriela DAVID

Mechanochemical modification method used in the development of new composite materials based on epoxy binder and natural minerals

Umida ZIYAMUKHAMEDOVA, Dilshod DJUMABAEV, Botirali SHAYMARDANOV

A new method for calculating the vibration-rotation-tunneling spectra of molecular clusters and its application to the water dimer

Mahir E. OCAK

New secondary metabolites from Croton sparsiflorus Morong

Rashad MEHMOOD, Amna BIBI, Abdul MALIK

Advances in the chemistry of pyrazolopyrazoles

Rizk Elsyad KHIDRE, Hanan Ahmed MOHAMED

Electrochemical properties of 1,3-disubstituted methyl methoxy phenyl-5-phenylformazans and comparison with spectral properties

Habibe TEZCAN, Güler EKMEKCİ, M. Levent AKSU

Molecular docking and QSAR study on imidazole derivatives as 14 /alpha -demethylase inhibitors

Asghar DAVOOD, Maryam IMAN

Molecular docking and QSAR study on imidazole derivatives as $14alpha$ -demethylase inhibitors

Maryam IMAN, Asghar DAVOOD

Synthesis, characterization, and antimicrobial activity of some new phosphorus macrocyclic compounds containing pyrazole rings

Tarik El-Sayed ALI, Salah Abdel-Aziz ABDEL-GHAFFAR, Kamilia Mohamed EL-MAHDY, Somaia Mohamed ABDEL-KARIM

Fabrication of layer-by-layer deposited films containing carbon nanotubes and poly(malachite green) as a sensor for simultaneous determination of ascorbic acid, epinephrine, and uric acid

Jahan Bakhsh RAOOF, Reza OJANI, Mehdi BAGHAYERI