Development of a spiramycin sensor based on adsorptive stripping linear sweep voltammetry and its application for the determination of spiramycin in chicken egg samples

Herein, an adsorptive stripping linear sweep voltammetric technique was described to determine spiramycin, a macrolide antibiotic, using a carboxylic multiwalled glassy carbon electrode modified with carbon nanotubes. The main principle of the analytical methodology proposed was based on the preconcentration of spiramycin by open-circuit accumulation of the macrolide onto the modified electrode surface. As a result of the adsorption affinity of spiramycin to the modified surface, the sensitivity of the glassy carbon electrode was significantly increased for the determination of spiramycin. The electrochemical behavior of spiramycin was evaluated by cyclic voltammetry and the irreversible anodic peak observed was measured as an analytical signal in the methodology. The proposed electrochemical sensing platform was quite linear in the range of 0.100–40.0 μM of spiramycin concentration with a correlation coefficient of 0.9993. The limit of detection and the limit of quantification were 0.028 and 0.094 μM, respectively. The intra- and interday repeatability of the proposed sensor was within acceptable limits. Finally, the applicability of the electrochemical methodology was examined by determining the drug content of chicken egg samples spiked with spiramycin standard. A rapid and easy extraction technique was performed to extract spiked spiramycin from the egg samples. The extraction technique followed had good recovery values between 85.3 ± 4.0% and 93.4 ± 1.9%.

___

  • Adhikari BR, 2015, SENSORS-BASEL, V15, P22490, DOI 10.3390/s150922490
  • Barton MD, 2000, NUTR RES REV, V13, P279, DOI 10.1079/095442200108729106
  • CHANDRA U, 2011, AM J ANAL CHEM, V2, P262, DOI DOI 10.4236/ajac.2011.22032
  • Cittan M, 2019, INT J ENVIRON AN CH, V99, P1540, DOI 10.1080/03067319.2019.1625342
  • Cittan M, 2016, TALANTA, V159, P148, DOI 10.1016/j.talanta.2016.06.021
  • Delepine B, 1996, J AOAC INT, V79, P397 .
  • Drljevic-Djuric KM, 2011, RUSS J ELECTROCHEM+, V47, P781, DOI 10.1134/S1023193511070056
  • Dubois M, 2001, J CHROMATOGR B, V753, P189, DOI 10.1016/S0378-4347(00)00542-9
  • El Sheikh R, 2013, INT J PHARM SCI RES, V4, P2234, DOI 10.13040/IJPSR.0975-8232.4(6).2234-43
  • Elkhoudary MM, 2016, J CHROMATOGR SCI, V54, P1701, DOI 10.1093/chromsci/bmw126
  • Erady V, 2017, MAT SCI ENG C-MATER, V76, P114, DOI 10.1016/j.msec.2017.03.082
  • Furusawa N, 1999, J VET MED A, V46, P599, DOI 10.1046/j.1439-0442.1999.00247.x
  • Furusawa N, 1999, TALANTA, V49, P461, DOI 10.1016/S0039-9140(99)00043-0
  • Mayor MAG, 2017, FOOD CHEM, V221, P721, DOI 10.1016/j.foodchem.2016.11.114
  • Gilbert O, 2009, INT J ELECTROCHEM SC, V4, P582
  • Gomis DB, 2004, J FOOD SCI, V69, pC415, DOI 10.1111/j.1365-2621.2004.tb10708.x
  • Horie M, 2003, J FOOD HYG SOC JPN, V44, P150, DOI 10.3358/shokueishi.44.150
  • Horie M, 1998, J CHROMATOGR A, V812, P295, DOI 10.1016/S0021-9673(98)00004-1
  • Hu H, 2001, CHEM PHYS LETT, V345, P25, DOI 10.1016/S0009-2614(01)00851-X
  • ICH Topic Q2B, 1997, ICH TOP Q2B GUID VAL
  • Juhel-Gaugain M, 1999, J AOAC INT, V82, P1046
  • Khattab FI, 2011, PORT ELECTROCHIM ACT, V29, P79, DOI 10.4152/pea.201102079
  • Khattab FI, 2010, DRUG TEST ANAL, V2, P37, DOI 10.1002/dta.83
  • Kukovecz A, 2002, J PHYS CHEM B, V106, P6374, DOI 10.1021/jp014019f
  • Kuznetsova A, 2001, J AM CHEM SOC, V123, P10699, DOI 10.1021/ja011021b
  • Liang R, 2010, J MED PEST CONTROL, V09 .
  • Lin Q, 2018, J PHARMACEUT BIOMED, V149, P57, DOI 10.1016/j.jpba.2017.10.041
  • Maher HM, 2008, J CHROMATOGR B, V876, P175, DOI 10.1016/j.jchromb.2008.10.033
  • Mahmoudi A, 2018, SEP SCI PLUS, V1, P253, DOI 10.1002/sscp.201800014
  • Mohamed MA, 2019, MICROCHEM J, V147, P555, DOI 10.1016/j.microc.2019.03.057
  • Mohamed MA, 2018, TALANTA, V185, P344, DOI 10.1016/j.talanta.2018.03.104
  • Rosca ID, 2005, CARBON, V43, P3124, DOI 10.1016/j.carbon.2005.06.019
  • ROUDAUT B, 1990, BRIT POULTRY SCI, V31, P661, DOI 10.1080/00071669008417297
  • Shetti NP, 2019, ANAL CHIM ACTA, V1051, P58, DOI 10.1016/j.aca.2018.11.041
  • Shetti NP, 2018, ELECTROCHIM ACTA, V269, P204, DOI 10.1016/j.electacta.2018.02.170
  • Wan HJ, 2011, COLLOID SURFACE B, V86, P247, DOI 10.1016/j.colsurfb.2011.03.037
  • Wang J, 2005, J AGR FOOD CHEM, V53, P1857, DOI 10.1021/jf048414p
  • Wang J, 2004, J AGR FOOD CHEM, V52, P171, DOI 10.1021/jf034823u
  • Wang J, 2009, J SEP SCI, V32, P681, DOI 10.1002/jssc.200800599
  • Wang K, 2017, J AGR FOOD CHEM, V65, P5064, DOI 10.1021/acs.jafc.7b01777
  • Xi X, 2012, ANAL METHODS-UK, V4, P3013, DOI 10.1039/c2ay25537e
  • Yao H, 2007, ANAL SCI, V23, P677, DOI 10.2116/analsci.23.677
  • YOSHIDA M, 1971, Japanese Poultry Science, V8, P103
  • Youssef RM, 2010, DRUG TEST ANAL, V2, P392, DOI 10.1002/dta.137
  • Yujie H, 1996, CHEM ADHESION, V03 .
  • Zhao FengJuan, 2016, Journal of Food Safety and Quality, V7, P4602
  • Zhou JK, 2000, ELECTROPHORESIS, V21, P1349, DOI 10.1002/(SICI)1522-2683(20000401)21:7<1349::AID-ELPS1349>3.0.CO;2-Z
  • 신동빈, 2013, [Journal of Food Hygiene and Safety, 한국식품위생안전성학회지], V28, P19