Choline derivatives immobilized on silica to catalyze transesterification reaction for production of glycerophosphocholine

Choline derivatives immobilized on silica to catalyze transesterification reaction for production of glycerophosphocholine

Choline derivatives were covalently immobilized on the surface of γ -aminated silica. The obtained immobilized choline derivative was then successfully used for a transesterification reaction to produce glycerophosphocholine(GPC). Fourier transform infrared analysis and thermogravimetric analysis/differential thermal gravimetry indicatedthat the surface of the γ -aminated silica was covered by choline derivatives and the highest immobilization amountreached 1.1 mmol/g under optimal conditions. More importantly, the highest yield of GPC reached 97.9% duringtransesterification. With regard to GPC in food or medicine for human use, the immobilization technology can avoidcatalyst contamination of the product and increase the safety of the product. The recyclability and stability of theimmobilized choline derivative were excellent, as demonstrated by its use 20 times without any loss of productivity. Afirst-order kinetic model was employed and the relevant parameters were calculated to investigate kinetic characteristics of transesterification.

___

  • 1. Zhang K, Wang X, Huang J, Liu Y. Purification of l-alpha glycerylphosphorylcholine by column chromatography. Journal of Chromatography A 2012; 1220: 108-114. doi: 10.1016/j.chroma.2011.12.003
  • 2. Li HY, Zhang XL, Yan B, Zhao BX, Gao J. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine. Chemical Papers 2016; 70 (6): 706-712. doi: 10.1515/chempap-2016-0023
  • 3. Bang HJ, Kim IH, Kim BH. Phospholipase A1 -catalysted hydrolysis of soy phosphatidylcholine to prepare l-αglyceryphosphotycholine in organic-aqueous media. Food Chemistry 2016; 190: 201-206. doi: 10.1016/j.foodchem.2015.05.093
  • 4. De Jesus Moreno Moreno M. Cognitive improvement in mild to moderate Alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clinical Therapeutics 2003; 25 (1): 178-193. doi: 10.1016/S0149-2918(03)90023-3
  • 5. Grimm MOW, Kuchenbecker J, Rothhaar TL, Grösgen S, Hundsdörfer B et al. Plasmalogen synthesis is regulated via alkyl-dihydroxyacetonephosphate-synthase by amyloid precursor protein processing and is affected in Alzheimer’s disease. Journal of Neurochemistry 2011; 116 (5): 10. doi: 10.1111/j.1471-4159.2010.07070.x
  • 6. Lee SH, Choi BY, Kim JH, Kho AR, Sohn M et al. Late treatment with choline alfoscerate (l-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain Research 2017; 1654: 66-76. doi: 10.1016/j.brainres.2016.10.011
  • 7. Canal N, Franceschi M, Alberoni M, Castiglioni C, Moliner PD et al. Effect of L-alpha-glyceryl- phosphorylcholine on amnesia caused by scopolamine. International Journal of Clinical Pharmacology, Therapy, and Toxicology 1991; 29 (3): 103-107. doi: 10.1097/00004850-199100610-00007
  • 8. Kawamura T, Okubo T, Sato K, Fujita S, Goto K et al. Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition 2012; 28 (11-12): 1122-1126. doi: 10.1016/j.nut.2012.02.011
  • 9. King EJ, Aloisi M. Phosphoric esters of the pancreas; choline glycerophosphate. Biochemical Journal 1945; 39 (39): 470-473. doi: 10.1042/bj0390470
  • 10. Wallace JC, Wales RG, White IG. The respiration of the rabbit epididymis and its synthesis of glycerylphosphorylcholine. Australian Journal of Biological Sciences 1966; 19 (5): 849. doi: 10.1071/bi9660849
  • 11. Baer E, Buchnea D. Synthesis of saturated and unsaturated L-alpha-lecithins; acylation of the cadmium chloride compound of L-alpha-glycerylphosphorylcholine. Canadian Journal of Biochemistry & Physiology 1959; 37 (8): 953. doi: 10.1139/o59-105
  • 12. Pietruszko R, Gray GM. The products of mild alkaline and mild acid hydrolysis of plasmalogens. Biochim Biophys Acta 1962; 56 (56): 232-239. doi: 10.1016/0006-3002(62)90560-7
  • 13. Chadha JS. Preparation of crystalline L-α-glycerophosphoryl-choline-cadmium chloride adduct from commercial egg lecithin. Chemistry & Physics of Lipids 1970; 4 (1): 104-108. doi: 10.1016/0009-3084(70)90067-8
  • 14. Zhang T, Zhang X, Li H, Bai W, Zhao B. Kinetic evaluation of the ethanolysis of phosphatidylcholine catalyzed by choline hydroxid. Reaction Kinetics Mechanisms & Catalysis 2013; 110 (1): 31-39. doi: 10.1007/s11144-013-0579-9
  • 15. Li H, Zhang X, Zhang J, Zhang T, Zhao B. Preparing L-α-glycerophosphocholine in a phase-transfer catalytic reaction: kinetic study. International Journal of Chemical Kinetics 2014; 46 (3): 169-175. doi: 10.1002/kin.20840
  • 16. Li H, Zhang X, Zhang T, Dou K, Zhao B. Study on the methanolysis of natural lecithin catalyzed by quaternary ammonium base resin. Reaction Kinetics Mechanisms & Catalysis 2012; 107 (2): 345-354. doi: 10.1007/s11144-012- 0471-z
  • 17. Li H, Zhang X, Bai W, Zhang J, Zhang T. Study on the preparation of l-α-glycerophosphocholine catalyzed by low boiling point organic amines. Reaction Kinetics, Mechanisms & Catalysis 2013; 108 (2): 305-316. doi: 10.1007/s11144-012-0509-2
  • 18. Li HY, Zhang XL, Bai WL, Zhao BX. Preparation of l-α-glycerophosphocholine from natural lecithin catalyzed by tert-butylamine. Advanced Materials Research 2013; 641: 148-151. doi: 10.4028/www.scientific.net/amr.641- 642.148
  • 19. Tronconi G. Process for preparing l-alpha-glycerylphosphoryl-d-myoinositol and its salts. European Patent, 1994.
  • 20. Li B, Li H, Zhang X, Fan P, Liu L et al. Calcined sodium silicate as an efficient and benign heterogeneous catalyst for the transesterification of natural lecithin to L-α-glycerophosphocholine. Green Processing and Synthesis 2019; 8 (1): 78-84. doi: 10.1515/gps-2017-0190
  • 21. Xie W, Peng H, Chen L. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A 2006; 300 (1): 67-74. doi: 10.1016/j.apcata.2005.10.048
  • 22. Take JI, Kikuchi N, Yoneda Y. Base-strength distribution studies of solid-base surfaces. Journal of Catalysis 1971; 21 (2): 164-170. doi: 10.1016/0021-9517(71)90134-5
  • 23. Yang X, Huang W, Li Y, Wang S. CaCO3 , crystallization in 2,3-epoxypropyltrimethylammonium chloride modified gelatin solutions. Powder Technology 2017; 320: 368-376. doi: 10.1016/j.powtec.2017.07.065
  • 24. Ren JL, Sun RC, Liu CF, Chao ZY, Luo W. Two-step preparation and thermal characterization of cationic 2- hydroxypropyltrimethylammonium chloride hemicellulose polymers from sugarcane bagasse. Polymer Degradation and Stability 2006; 91 (11): 2579-2587. doi: 10.1016/j.polymdegradstab.2006.05.008
  • 25. Yan L, Tao H, Bangal PR. Synthesis and flocculation behavior of cationic cellulose prepared in a NaOH/urea aqueous solution. CLEAN - Soil, Air, Water 2010; 37 (1): 39-44. doi: 10.1002/clen.200800127
  • 26. Pi-Xin W, Xiu-Li W, Xue D H, Xu K, Tan Y et al. Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane–THF–water media. Carbohydrate Research 2009; 344 (7): 851-855. doi: 10.1016/j.carres.2009.02.023
  • 27. Bergqvist-Karlsson A. Contact allergy to glycidyl trimethyl ammonium chloride. Contact Dermatitis 2010; 12 (1): 61-62. doi: 10.1111/j.1600-0536
  • 28. He Z, Wang Y, Zhao T, Ye Z, Huang H. Ultrasonication-assisted rapid determination of epoxide values in polymer mixtures containing epoxy resin. Analytical Methods 2014; 6 (12): 4257-4261. doi: 10.1039/C4AY00439F
  • 29. Nai Ni G, Jian Zhou Y, Min Yan Z. Reactions of some anhydride-containing copolymers with γ -aminopropyltriethoxysilane. Leather and Chemicals 2001; 42 (13): 5599-5606. doi: 10.3969/j.issn.1674-0939.2011.01.002 (in Chinese with an abstract in English).
  • 30. Peng F, Lin L, Fang NH. Study of catalytic synthesis of 2,3-epoxypropyl trimethyl ammonium chloride by potassium iodide. Modern Chemical Industry 2010; 1 (30): 66-67. doi: 10.16606/j.cnki.issn0253-4320.2010.01.012 (in Chinese with an abstract in English).
  • 31. Rzayev ZMO, Guner A, Can HK, Asici A. Preparation of mesostructured materials from tetramethoxysilane and alkyltrimethylammonium salts and their conversion to porous silica. Polymer 2001; 42 (13): 5599-5606. doi: 10.1016/S0032-3861(00)00924-1
  • 32. Ogawa M, Yamamoto N. Preparation of mesostructured materials from tetramethoxysilane and alkyltrimethylammonium salts and their conversion to porous silica. Journal of Porous Materials 1999; 6 (1): 19-24. doi: 10.1023/A:1009628900106
  • 33. Alekseev SA, Zaitsev VN. Organosilicas with covalently bonded groups under thermochemical treatment. Chemistry of Materials 2006; 18 (7): 1981-1987. doi: 10.1021/cm052776a
  • 34. He H, Duchet J, Galy J, Gerard JF. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science 2005; 288 (1): 171-176. doi: 10.1016/j.jcis.2005.02.092
  • 35. Chen JH, Xing HT, Guo HX, Li GP, Weng W et al. Preparation, characterization and adsorption properties of a novel 3-aminopropyltriethoxysilane functionalized sodium alginate porous membrane adsorbent for Cr(III) ions. Journal of Hazardous Materials 2013; 248-249 (1): 285-294. doi: 10.1016/j.jhazmat.2013.01.042
  • 36. Li B, Wang J, Zhang X, Zhao B. An enzyme net coating the surface of nanoparticles: a simple and efficient method for the immobilization of phospholipase D. Industrial & Engineering Chemistry Research 2016; 55 (40): 10555-10565. doi: 10.1021/acs.iecr.6b02192
  • 37. Mainardi F, Luchko Y, Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Fractional Calculus and Applied Analysis 2007; 4 (2): 153-192. doi: 10.1007/BF02935797
  • 38. Paterson G, Issariyakul T, Baroi C, Bassi A, Dalai A. Ion-exchange resins as catalysts in transesterification of triolein. Catalysis Today 2013; 212: 157-163. doi: 10.1016/j.cattod.2012.10.013
  • 39. Saleem M, Rashid MH, Jabbar A, Perveen R, Khalid AM et al. Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Biochemistry 2005; 40 (2): 849-855. doi: 10.1016/j.procbio.2004.02.026
  • 40. Wang ZQ, Li YB, Tan XP, He WX, Xie W. Effect of arsenate contamination on free, immobilized and soil alkaline phosphatases: activity, kinetics and thermodynamics. European Journal of Soil Science 2017; 68 (1): 126-135. doi: 10.1111/ejss.12397