Synthesis of new cyclotriphosphazene derivatives bearing Schiff bases and their thermal and absorbance properties

In this study, a series of cyclotriphosphazene derivatives containing a Schiff base (3a-3d) were synthesized by the reactions of hexachlorocyclotriphosphazene (1) with bis-aryl Schiff bases (2a-2d) having different terminal groups (H, F, Cl, and Br). The products (3a-3d) were characterized by elemental and mass analyses, FT-IR, and 1H, 13C, and 31 P NMR spectroscopies. Furthermore, the structure of compound 3a was also determined by X-ray crystallography. The thermal behaviors and the spectral properties of the new cyclotriphosphazene compounds (3a-3d) were investigated and the results were compared in the series.

___

  • 1. De Proft F, Geerlings P. Structure, Bonding and Reactivity of Heterocyclic Compounds. Berlin, Germany: Springer, 2014.
  • 2. Eicher T, Hauptmann S, Seicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis and Applications. Weinheim, Germany: Wiley-VCH, 2012.
  • 3. Allcock HR. Chemistry and Application of Polyphosphazenes. Hoboken, NJ, USA: Wiley-Interscience, 2003.
  • 4. Gleria M, De Jaeger R (editors). Applicative Aspects of Cyclophosphazenes. New York, NY, USA: Nova Science Publishers, 2004.
  • 5. Andrianov AK. Polyphosphazenes for Biomedical Applications. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009.
  • 6. Chandrasekhar V, Krishnan V. Advances in the chemistry of chlorocyclophosphazenes. Advances in Inorganic Chemistry 2002; 53: 159-211. doi: 10.1016/S0898-8838(02)53005-1
  • 7. Çoşut B, Durmuş M, Kılıç A, Yeşilot S. Synthesis, thermal and photophysical properties of phenoxy-substituted dendrimeric cyclic phosphazenes. Inorganica Chimica Acta 2011; 366: 161-172. doi: 10.1016/j.ica.2010.10.031
  • 8. He Q, Dai H, Tan X, Cheng X, Liu F et al. Synthesis and characterization of room temperature columnar mesogens of cyclotriphosphazene with Schiff base units. Journal of Material Chemistry C 2013; 1: 7148-7154. doi: 10.1039/C3TC31371A
  • 9. Ün I, Ibişoğlu H, Sahin Ün S, Çoşut B, Kılıç A. Syntheses, characterizations, thermal and photophysical properties of cyclophosphazenes containing adamantane units. Inorganica Chimica Acta 2013; 399: 219-226. doi: 10.1016/j.ica.2013.01.028
  • 10. Tümay SO, Uslu A, Ardıç Alidağı H, Kazan HH, Bayraktar C et al. A systematic series of fluorescence chemosensors with multiple binding sites for Hg (II) based on pyrenyl-functionalized cyclotriphosphazenes and their application in live cell imaging. New Journal of Chemistry 2018; 42: 14219-14228. doi: 10.1039/C8NJ02482K
  • 11. Mutlu Balcı C, Beşli S. The synthesis and thermal properties of fluorodioxy-substituted N, N -spiro bridged cyclotriphosphazenes. Polyhedron 2017; 126: 49-59. doi: 10.1016/j.poly.2017.01.014
  • 12. Jimenez J, Callizo L, Serrano JL, Barbera J, Oriol L. Mixed-substituent cyclophosphazenes with calamitic and polycatenar mesogens. Inorganic Chemistry 2017; 56: 7907-7921. doi: 10.1021/acs.inorgchem.7b00612
  • 13. Liu X, Breon JP, Chen C, Allcock HR. Substituent exchange reactions of trimeric and tetrameric aryloxycyclophosphazenes with sodium 2,2,2-trifluoroethoxide. Dalton Transactions 2012; 41: 2100-2109. doi: 10.1039/c1dt11606a
  • 14. Prasanna D, Selvaraj V. Cyclophosphazene based conductive polymer-carbon nanotube composite as novel supporting material for methanol fuel cell applications. Journal of Colloid and Interface Science 2016; 472: 116-125. doi: 10.1016/j.jcis.2016.03.032
  • 15. Chandrasekhar V, Andavan GTS, Azhakar R, Pandian BM. Cyclophosphazene-supported tetranuclear copper assembly containing 15 contiguous inorganic rings. Inorganic Chemistry 2008; 47: 1922-1924. doi: 10.1021/ic702500n
  • 16. Cao CT, Zhou W, Cao C. Abnormal effect of hydroxyl on the longest wavelength maximum in ultraviolet absorption spectra for bis-aryl Schiff bases. Journal of Physical Organic Chemistry 2017; 30: 3672-3680. doi: 10.1002/poc.3672
  • 17. Ceyhan G, Köse M, Tümer M, Demirtas I. Anticancer, photoluminescence and electrochemical properties of structurally characterized two imine derivatives. Spectrochimica Acta Part A 2015; 149: 731-743. doi: 10.1016/j.saa.2015.05.021
  • 18. El-Sonbati AZ, Diaba MA, El-Bindarya AA, Mohamed GG, Morgan SM et al. Geometrical structures, thermal stability and antimicrobial activity of Schiff base supramolecular and its metal complexes. Journal of Molecular Liquids 2016; 215: 423-442. doi: 10.1016/j.molliq.2015.12.006
  • 19. Yerrasani R, Karunakar M, Dubey R, Singh AK, Rao TR. Thermal, optical and photophysical behaviour of some mesogenic benzimidazole-based Schiff-bases. Journal of Molecular Liquids 2017; 248: 214-218. doi: 10.1016/j.molliq.2017.10.051
  • 20. Ayoub MA. Synthesis, spectroscopic, thermal, fluorescence properties and molecular modeling of novel Pt (II) complex with schiff base containing NS donor atoms. Journal of Molecular Structure 2018; 1173: 17-25. doi: 10.1016/j.molstruc.2018.06.051
  • 21. Venkatesana J, Sekar M, Thanikachalamb V, Manikandan G. Thermal decomposition and kinetic analyses of sulfonamide Schiff’s bases in oxygen atmosphere - A comparative study. Chemical Data Collections 2017; 9-10: 229-243. doi: 10.1016/j.cdc.2017.07.001
  • 22. Jia Y, Li JB. Molecular assembly of Schiff base interactions: construction and application. Chemical Reviews 2015; 115 (3): 1597-1621. doi: 10.1021/cr400559g
  • 23. Vukovic L, Burmeister CF, Kral P, Groenhof G. Control mechanisms of photoisomerization in protonated Schiff bases. Journal of Physical Chemistry Letters 2013; 4 (6): 1005-1011. doi: 10.1021/jz400133u
  • 24. Yazdanbakhsh MR, Mohammadi A. Synthesis, substituent effects and solvatochromic properties of some disperse azo dyes derived from N-phenyl-2,2’-iminodiethanol. Journal of Molecular Liquids 2009; 148 (1): 35-39. doi: 10.1016/j.molliq.2009.06.001
  • 25. Lohmann W. Halogen-substitution effect on the optical absorption bands of uracil. Zeitschrift für Naturforschung C 1974; 29 (9): 493-495. doi: 10.1515/znc-1974-9-1007
  • 26. Odabaşoğlu M, Turgut G, Karaer H. Preparation and characterization of chromophor group containing cyclotriphosphazenes: I Imino chromophor carrying some cyclotriphosphazenesphosphorus. Sulfur and Silicon 1999; 152 (1): 9-25. doi: 10.1080/10426509908031613
  • 27. Aslan F, Oztürk AI, Söylemez B. Synthesis of fluorescence organocyclotriphosphazene derivatives having functional groups such as formyl, Schiff base and both formyl and Schiff base without using Ar or N2 atmosphere. Journal of Molecular Structure 2017; 1137: 387-395. doi: 10.1016/j.molstruc.2017.01.047
  • 28. Khatri PK, Jain SL. Multiple oxo-vanadium Schiff base containing cyclotriphosphazene as a robust heterogeneous catalyst for regioselective oxidation of naphthols and phenols to quinones. Catalysis Letters 2012; 142 (8): 1020- 1025. doi: 10.1007/s10562-012-0852-y
  • 29. Tümer Y, Yüksektepe Ç, Batı H, Çalışkan N, Büyükgüngör O. Preparation and characterization of hexakis [2-methoxy-4-(2,3-dimethylphenylimino) phenylato] cyclotriphosphazene. Phosphorus Sulfur and Silicon and the Related Elements 2010; 185 (12): 2449-2454. doi: 10.1080/10426501003692078
  • 30. Bertani R, Facchin G. Organometallic and coordination chemistry on phosphazenes Part I. Zn (II), Pd (II) and Pt (II) complexes on Schiff base-containing cyclophosphazenes. Inorganica Chimica Acta 1989; 165 (1): 13-82. doi: 10.1016/S0020-1693(00)83403-9
  • 31. Moriya K, Kawanishi Y, Yano S, Kajiwara M. Mesomorphic phase transition of a cyclotetraphosphazene containing Schiff base moieties: comparison with the corresponding cyclotriphosphazene. Chemical Communications 2000; 1111-1112. doi: 10.1039/b000497i
  • 32. Xu J, Ling TC, He C. Hydrogen bond-directed self-assembly of peripherally modified cyclotriphosphazenes with a homeotropic liquid crystalline phase. Journal of Polymer Science Part A 2008; 46 (14): 4691-4703. doi: 10.1002/pola.22800
  • 33. Bruker. SADABS. Madison, WI, USA: Bruker AXS Inc., 2005.
  • 34. Bruker. APEX2 (Version 2011.4-1). Madison, WI, USA: Bruker AXS Inc., 2008.
  • 35. Sheldrick GM. A short history of SHELX. Acta Crystallographica A 2008; 64 (1): 112-122. doi: 10.1107/S0108767307043930
  • 36. Spek AL. Structure validation in chemical crystallography. Acta Crystallographica Section D 2009; 65 (2): 148-155. doi: 10.1107/S090744490804362X
  • 37. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P et al. Mercury CSD 2.0 - New features for the visualization and investigation of crystal structures. Journal of Applied Crystallography 2008; 41: 466-470. doi: 10.1107/S0021889807067908
  • 38. Brandenburg K. DIAMOND 3.1 for Windows. Bonn, Germany: Crystal Impact GbR, 2006.
  • 39. Kaur G, Singh S, Sreekumar A, Choudhury AR. The evaluation of the role of C-H:F hydrogen bonds in crystal altering the packing modes in the presence of strong hydrogen bond. Journal of Molecular Structure 2016; 1106: 154-169. doi: 10.1016/j.molstruc.2015.10.105
  • 40. Wahl H, Haynes DA, Roex T. A series of polymorphs of hexakis(4-fluorophenoxy)cyclotriphosphazene. Crystal Growth & Design 2012; 12 (8): 4031-4038. doi: 10.1021/cg300503p
  • 41. Cho Y, Baek H., Sohn YS. Functionalization of organophosphazene trimers: synthesis and characterization of hexakis(dicarboxylic amino acid ester)cyclotriphosphazenes and their salt derivatives. Polyhedron 1999; 18 (13): 1799-1804. doi: 10.1016/S0277-5387(99)00042-X
  • 42. Zhang X, Akram R, Zhang S, Ma H, Wu Z et al. Hexa(eugenol)cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy. Reactive and Functional Polymers 2017; 113: 77-84. doi: 10.1016/j.reactfunctpolym.2017.02.010
  • 43. Byczyński L, Dutkiewicz M, Januszewski R. Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Progress in Organic Coatings 2017; 108: 51- 58. doi: doi.org/10.1016/j.porgcoat.2017.04.010
  • 44. Xu M, Xu GR, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polymer Degradation and Stability 123: 2016; 105-114. doi: 10.1016/j.polymdegradstab.2015.11.018
  • 45. Alvarez JC, De la Campa JG, Lozano AE, De Abajo J. Thermal and mechanical properties of halogen-containing aromatic polyamides. Macromolecular Chemistry and Physics 2001; 202 (16): 3142-3148. doi: 10.1002/1521- 3935(20011101)202:16<3142::AID-MACP3142>3.0.CO;2-R
  • 46. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G. Halogen bonding in supramolecular chemistry. Angewandte Chemie 2008; 47 (33): 6114-6127. doi: 10.1002/anie.200800128
  • 47. Ketata I, Mechi L, Ayed TB, Dusek M, Petricek V et al. Synthesis, characterization, spectroscopic and crystallographic investigation of cobalt (III) Schiff base complex with two perpendicular diamine coumarin ligands. Open Journal of Inorganic Chemistry 2012; 2: 33-39. doi: 10.4236/ojic.2012.22006
  • 48. Lo WK, Wong WK, Guo J, Wong WY, Li KF et al. Synthesis, structures and luminescent properties of new heterobimetallic Zn-4f Schiff base complexes. Inorganica Chimica Acta 2004; 357 (15): 4510-4521. doi: 10.1016/j.ica.2004.06.041
  • 49. Lo WK, Wong WK, Wong WY, Guo J, Yeung KT et al. Heterobimetallic Zn (II)−Ln (III) phenylene-bridged Schiff base complexes, computational studies, and evidence for singlet energy transfer as the main pathway in the sensitization of near-infrared Nd 3+ luminescence. Inorganic Chemistry 2006; 45 (23): 9315-9325. doi: 10.1021/ic0610177
  • 50. Zhang J, Zhao F, Zhu X, Wong WK, Ma D et al. New phosphorescent platinum (II) Schiff base complexes for PHOLED applications. Journal of Materials Chemistry 2012; 22: 16448-16457. doi: 10.1039/C2JM32266H
  • 51. Yeşilot S, Çoşut B, Ardıç Alidağı H, Hacıvelioğlu F, Altınbaş Özpınar G et al. Intramolecular excimer formation in hexakis-(pyrenyloxy)cyclotriphosphazene: photophysical properties, crystal structure, and theoretical investigation. Dalton Transactions 2014; 43: 3428-3433. doi: 10.1039/C3DT52957F
  • 52. Tang HH, Zhang L, Zeng LL, Fang XM, Lin LR et al. A pair of Schiff base enantiomers studied by absorption, fluorescence, electronic and vibrational circular dichroism spectroscopies and density functional theory calculation. RSC Advances 2015; 5: 36813-36819. doi: 10.1039/C5RA02154E
  • 53. Tümay SO, Yıldırım Sarıkaya S, Yeşilot S. Novel iron (III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. Journal of Luminescence 2018; 196: 126-135. doi: 10.1016/j.jlumin.2017.12.019
  • 54. Uslu A, Tümay SO, Şenocak A, Yuksel F, Özcan E et al. Imidazole/benzimidazole-modified cyclotriphosphazenes as highly selective fluorescent probes for Cu 2+ : synthesis, configurational isomers, and crystal structures. Dalton Transactions 2017; 46: 9140-9156. doi: 10.1039/C7DT01134B
  • 55. Ardıç Alidağı H, Hacıvelioğlu F, Tümay SO, Çoşut B, Yeşilot S. Synthesis and spectral properties of fluorene substituted cyclic and polymeric phosphazenes. Inorganica Chimica Acta 2017; 457: 95-102. doi: 10.1016/j.ica.2016.12.013
  • 56. Dkaki M, Lyazidi SA, Haddad M. Concentration effect on the absorption and emission spectra of the 9-oxa2,3,4’-methoxybenzobicyclo[4.3.0]non-1(6)-ene-7,8-dione: self-associated dimer and excimer. Journal of Physical Chemistry A 1998; 102 (27): 5275-5279. doi: 10.1021/jp970151x
  • 57. Wu JS, Liu WM, Zhuang XQ, Wang F, Wang PF et al. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Organic Letters 2007; 9 (1): 33-36. doi: 10.1021/ol062518z
  • 58. Sheng JR, Feng F, Qiang Y, Liang FG, Sen L et al. A coumarin-derived fluorescence chemosensors selective for copper(II). Analytical Letters 2008; 41 (12): 2203-2213. doi: 10.1080/00032710802237673
  • 59. Li L, Liu F, Li HW. Selective fluorescent probes based on C=N isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution. Spectrochimica Acta Part A 2011; 79 (5): 1688-1692. doi: 10.1016/j.saa.2011.05.036
  • 60. Song X, Han X, Yu F, Zhang J, Chen L et al. A reversible fluorescent probe based on C=N isomerization for the selective detection of formaldehyde in living cells and in vivo. Analyst 2018; 143 (2): 429-439. doi: 10.1039/C7AN01488K
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

One-pot synthesis of VOx /Al2O3 as efficient catalysts for propane dehydrogenation

Zhihao DING, Liancheng BING, Kai LU, Guangjian WANG, Hao XU

Yeliz İPEK

Synthesis and spectroscopic properties of (N/O) mono- and dispirocyclotriphosphazene derivatives with benzyl pendant arms: study of biological activity

Özlem İŞCAN, Reşit CEMALOĞLU, Nuran ASMAFİLİZ, Zeynel KILIÇ, Tuncer HÖKELEK, Leyla AÇIK, Pelin ÖZBEDEN

Nucleophilic substitution reactions of monofunctional nucleophilic reagents with cyclotriphosphazenes containing 2,2-dioxybiphenyl units

Gönül YENİLMEZ ÇİFTÇİ, Esra TANRIVERDİ EÇİK, Eda ERDEMİR, Hanife İBİŞOĞLU, Gizem DEMİR, Fatma YÜKSEL

Laila SADALLAH, Aicha BOUKHRISS, Hassan HANNACHE, Said GMOUH

Semih DOĞAN, Süreyya Oğuz TÜMAY, Ceylan MUTLU BALCI, Serkan YEŞİLOT, Serap BEŞLİ

Özlem İŞCAN, Reşit CEMALOĞLU, Nuran ASMAFİLİZ, Zeynel KILIÇ, Leyla AÇIK, Pelin ÖZBEDEN, Tuncer HÖKELEK

Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes

Gönül YENİLMEZ ÇİFTÇİ, Elif ŞENKUYTU, Sergen YILMAZ, Nagihan BAYIK, Esra Nur KAYA, Mustafa BULUT, Mahmut DURMUŞ

Abidin GÜMRÜKÇÜOĞLU, Aysel BAŞOĞLU, Sevgi KOLAYLI, Saliha DİNÇ, Meryem KARA, Miraç OCAK, Ümmühan OCAK

Highly sensitive fluorometric method based on nitrogen-doped carbon dot clusters for tartrazine determination in cookies samples

Aysel BAŞOĞLU, Miraç OCAK, Sevgi KOLAYLI, SALİHA DİNÇ, Meryem KARA, Ümmühan OCAK, Abidin GÜMRÜKÇÜOĞLU