Achieving elusive transformations with organocatalysis: direct ββ-carbon activation of saturated carbonyl compounds

Achieving elusive transformations with organocatalysis: direct ββ-carbon activation of saturated carbonyl compounds

Direct β -carbon activation of saturated carbonyl compounds for carrying out fast forward β -functionalization has been one of the most difficult to achieve tasks in catalysis. In the past few years, this challenging issue has attracted considerable attention among the chemical community that has led to fruitful developments to accomplish this elusive transformation. In this short review, we highlight recent developments for direct β -carbon functionalization of saturated carbonyl compounds based on conceptually new methods including oxidative enamine catalysis, N -heterocyclic carbene (NHC)-assisted catalysis, and photoredox catalysis.

___

  • 1. Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615-1621.
  • 2. List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc. 2000, 122, 2395-2396.
  • 3. Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev. 2007, 107, 5471-5569.
  • 4. Notz, W.; Tanaka, F.; Barbas, C. F. III Acc. Chem. Res. 2004, 37, 580-591.
  • 5. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244.
  • 6. Lelais, G.; MacMillan, D. W. C. Aldrichim. Acta 2006, 39, 79-87.
  • 7. Zhang, L.; Fu, N.; Luo, S. Acc. Chem. Res. 2015, 48, 986-997.
  • 8. Barbas, C. F. III. Angew. Chem. Int. Ed. 2008, 47, 42-47.
  • 9. Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem. Int. Ed. 2008, 47, 6138-6171.
  • 10. Science of Synthesis, Asymmetric Organocatalysis; List, B.; Maruoka, K., Eds. Thieme: Stuttgart, Germany, 2012.
  • 11. Dalko, P. I., Ed. Enantioselective Organocatalysis:? Reactions and Experimental Procedures, Wiley-VCH: Weinheim, Germany, 2007.
  • 12. MacMillan, D. W. C.; Lelais. G. In New Frontiers in Asymmetric Catalysis; Mikami, K; Lautens, M., Eds. Wiley: Hoboken, NJ, USA, 2007, pp. 345-372.
  • 13. Berkessel, A.; Groeger, H. Asymmetric Organocatalysis: from Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim, Germany, 2005.
  • 14. Erkkil¨a, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107, 5416-5470.
  • 15. Enders, D.; Neimier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655.
  • 16. Ito, Y.; Hirato, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011-1013.
  • 17. Zhu, J.; Liu, J.; Ma, R. Q.; Xie, H. X.; Li, J.; Jiang, H. L.; Wang, W. Adv. Synth. Catal. 2009, 351, 1229-1232.
  • 18. Wang, L.; Xiao, J.; Loh, T. P. ChemCatChem 2014, 6, 1183-1185.
  • 19. Liu, J.; Zhu, J.; Jiang, H. L.; Wang, W.; Li, J. Chem. Asian J. 2009, 4, 1712-1716.
  • 20. Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J. Chem. Commun. 2010, 46, 415-417.
  • 21. Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew. Chem. Int. Ed. 2002, 41, 993-996.
  • 22. Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245-2258.
  • 23. Huang, Z.; Sam, Q. P.; Dong, G. Chem. Sci. 2015, 6, 5491-5498.
  • 24. Huang, Z.; Dong, G. J. Am. Chem. Soc. 2013, 135, 17747-17750.
  • 25. Zhang, F. L.; Hong, K.; Li, T. J.; Park, H.; Yu, J. Q. Science 2016, 351, 252-256.
  • 26. Zhou, J.; Wu, G.; Zhang, M.; Jie, X.; Su, W. Chem. - Eur. J. 2012, 18, 8032-8036.
  • 27. Shang, Y.; Jie, X.; Zhou, J.; Hu, P.; Huang, S.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 1299-1303.
  • 28. Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. J. Am. Chem. Soc. 2005, 127, 13154-13155.
  • 29. Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. Q. J. Am. Chem. Soc. 2007, 129, 3510-3511.
  • 30. Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984-12986.
  • 31. Chen, Y.; Romaire, J. P.; Newhouse, T. R. J. Am. Chem. Soc. 2015, 137, 5875-5878.
  • 32. Chen, Y.; Turlik, A.; Newhouse, T. R. J. Am. Chem. Soc. 2016, 138, 1166-1169.
  • 33. Burk, M. J.; Crabtree, R. H. J. Am. Chem. Soc. 1987, 109, 8025-8032.
  • 34. Liu, F.; Pak, E. B.; Singh, B.; Jensen, C. M.; Goldman, A. S. J. Am. Chem. Soc. 1999, 121, 4086-4087.
  • 35. Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681-703.
  • 36. Jie, X.; Shang, Y.; Zhang, X.; Su, W. J. Am. Chem. Soc. 2016, 138, 5623- 5633.
  • 37. Yi, C. S.; Lee, D. W. Organometallics 2009, 28, 947-949.
  • 38. Zhang, X.; Wang, D. Y.; Emge, T. J.; Goldman, A. S. Inorg. Chim. Acta 2011, 369, 253-259.
  • 39. Kusumoto, S.; Akiyama, M.; Nozaki, K. J. Am. Chem. Soc. 2013, 135, 18726-18729.
  • 40. Zhang, S. L.; Xie, H. X.; Zhu, J.; Li, H.; Zhang, X. S.; Li, J.; Wang, W. Nat. Commun. 2011, 2, 211.
  • 41. Hayashi, Y.; Itoh, T.; Ishikawa, H. Angew. Chem. Int. Ed. 2011, 50, 3920-3924.
  • 42. Zeng, X.; Ni, Q.; Raabe, G.; Enders, D. Angew. Chem. Int. Ed. 2013, 52, 2977-2980.
  • 43. Ofele, K. J. ¨ Organomet. Chem. 1968, 12, 42-45.
  • 44. Wanzlick, H. W.; Sch¨onherr, H. J. Angew. Chem. Int. Ed., 1968, 7, 141-142.
  • 45. Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.
  • 46. Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534-541.
  • 47. Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506-7510.
  • 48. Enders, D.; Balensiefer, T.; Niemeier, O.; Christmann, M. In Enantioselective Organocatalysis Reactions and Experimental Procedures; Dalko, P. I. Ed.; Wiley-VCH: Weinheim, Germany, 2007, p. 331.
  • 49. Marion, N.; D´ıez-Gonz´alez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988-3000.
  • 50. Enders, D.; Neimier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606-5655.
  • 51. K¨u¸c¨ukbay, H.; S¸ireci, N.; Yılmaz, U.; Akkurt, M.; Yal¸cın, S¸. P.; Nawaz Tahir, M.; Ott, H. ¨ Appl. Organometal. Chem. 2011, 25, 255-261.
  • 52. K¨u¸c¨ukbay, H.; Yılmaz, U.; Yavuz, K.; Bu˘gday, N. ¨ Turk. J. Chem. 2015, 39, 1265-1278.
  • 53. Mo, J.; Shen, L.; Chi, Y. R. Angew. Chem. Int. Ed. 2013, 52, 8588-8591.
  • 54. Pirnot, M. T.; Rankic, D. A.; Martin, D. B. C.; MacMillan, D. W. C. Science 2013, 339, 1593-1596.
  • 55. Fu, Z.; Xu, J.; Zhu, T.; Leong, W. W. Y.; Chi, Y. R. Nat. Chem. 2013, 5, 835-839.
  • 56. Fu, Z.; Jiang, K.; Zhu, T.; Torres, J.; Chi, Y. R. Angew. Chem. Int. Ed. 2014, 53, 6506-6510.
  • 57. Jin, Z.; Chen, S.; Wang, Y.; Zheng, P.; Yang, S.; Chi, Y. R. Angew. Chem. Int. Ed. 2014, 53, 13506 -13509.
  • 58. Jin, Z.; Jiang, K.; Fu, Z.; Torres, J.; Zheng, P.; Yang, S.; Song, B. A.; Chi, Y. R. Chem. Eur. J. 2015, 21, 9360-9363.
  • 59. Xu, J.; Yuan, S.; Miao, M.; Chen, Z. J. Org. Chem. 2016, 81, 11454-11460.
  • 60. Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77-80.
  • 61. Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886-12887.
  • 62. Narayanam, J. M. R.; Tucker, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2009, 131, 8756-8757.
  • 63. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322-5363.
  • 64. Reckentha¨oler, M.; Griesbeck, A. G. Adv. Synth. Catal. 2013, 355, 2727-2744.
  • 65. Tucker, J. W.; Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617-1622.
  • 66. Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102-113.
  • 67. Hoffmann, N. J. Photochem. Photobio. C 2008, 9, 43-60.
  • 68. Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725-2756.
  • 69. Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059-6071.
  • 70. Hari, D. P.; Ko¨onig, B. Chem. Commun. 2014, 50, 6688-6699.
  • 71. Amano, H. Rev. Mod. Phys. 2015, 87, 1133-1138. 72. Nakamura, S. Rev. Mod. Phys. 2015, 87, 1139-1151.
  • 73. Petronijevi´c, F. R.; Nappi, M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013, 135, 18323-18326.
  • 74. Terrett, J. A.; Clift, M. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 6858-6861.
  • 75. Jeffrey, J. L.; Petronijevi´c, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 8404-8407.
  • 76. Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli, D.; Fagnoni, M. Chem. Sci. 2014, 5, 2893-2898.