The multiple effects of organoclay and solvent evaporation on hydrophobicity of composite surfaces

The multiple effects of organoclay and solvent evaporation on hydrophobicity of composite surfaces

A superhydrophobic high-density polyethylene (HDPE)/organoclay composite material with a water-static contact angle of ∼162 ◦ and low hysteresis (7 ◦ ) was prepared by a simple solution-intercalation technique. This onestep method consists of the insertion of organoclay, produced through cation exchange with cetyltrimethylammonium bromide (CTAB), in the polymer matrix at 120 ◦ C in xylene. In this process, evaporation of the solvent and organoclay amount are key factors for the achievement of superhydrophobicity. We characterized composite material with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle measurements. The characterizations showed that the organoclay provides a place for the formation of small polymer aggregates and facilitates the evaporation of the organic solvent. The technique described here is simple and does not require any complicated process.

___

  • 1. Zhang, L.; Zhao, N.; Xu, J. J. Adhes. Sci. Technol. 2014, 28, 769-790.
  • 2. Zhang, P.; Lv, F. Y. A. Energy. 2015, 82, 1068-1087.
  • 3. Gogolides, E.; Ellinas, K.; Tserepi, A. Microelectron. Eng. 2015, 132, 132-155.
  • 4. Genzer, J.; Efimenko, K. Biofouling 2006, 22, 339-360.
  • 5. Warsinger, D. M.; Servi, A.; Van Belleghem, S.; Gonzalez, J.; Swaminathan, J.; Kharraz, J.; Chung, H. W.; Arafat, H. A.; Gleason, K. K.; Lienhard V, J. H. J. Memb. Sci. 2016, 505, 241-252.
  • 6. Rivero, P. J.; Urrutia, A.; Goicoechea, J.; Arregui, F. J. Nanoscale Res. Lett. 2015, 10, 505.
  • 7. Lv, J.; Song, Y.; Jiang, L.; Wang, J. ACS Nano. 2014, 8, 3152-3169.
  • 8. Qian, B.; Shen, Z. Langmuir 2005, 21, 9007-9009.
  • 9. Han, D.; Steckl, A. Langmuir 2009, 25, 9454-9462.
  • 10. Gupta, R. K.; Kumar, P.; Yadav, V.; Arora, S.; Singh, D. P.; Joshi, S. K.; Chawla, A. K.; Biswas. Curr. Nanosci. 2016, 12, 429-447.
  • 11. Ogihara, H. J. Vac. Soc. Japan 2015, 58, 431-435.
  • 12. Li, Y.; Huang, X.; Heo, S.; Li, C.; Choi, Y.; Cai, W. Langmuir 2007, 23, 2169-2174.
  • 13. Erbil, H. Y. Adv. Colloid Interface Sci. 2012, 170, 67-86.
  • 14. Wenzel, R. N. Ind. Eng. Chem. 1936, 28, 988-994.
  • 15. Cassie, A.; Baxter, S. Trans. Faraday Soc. 1944, 40, 546-551.
  • 16. Paul, D. R.; Robeson, L. M. Polym. Nanocomposites 2008, 49, 3187-3204.
  • 17. Yal¸cınkaya, S. E.; Yıldız, N.; Sa¸cak, M.; C¸ alımlı, A. Turk. J. Chem. 2010, 34, 581-592.
  • 18. Deliba¸s, A.; Alparslan, M. Turk. J. Chem. 2015, 39, 630-638.
  • 19. Fukushima, K.; Camino, G. Polym. Nanocomposites 2016, 287-328.
  • 20. Bayer, I.; Steele, A.; Martorana, P.; Loth, E. Appl. Surf. Sci. 2010, 3, 823-826.
  • 21. Bayer, I.; Brown, A.; Steele, A.; Loth, E. Appl. Phys. Express. 2009, 2, 125001-125003.
  • 22. Boinovich, L.; Emelyanenko, A. M.; Korolev, V. V; Pashinin, A. S. Langmuir 2014, 30, 1659-1668.
  • 23. Erbil, H.; Demirel, A.; Avcı, Y.; Mert, O. Science 2003, 299, 1377-1380.
  • 24. Lu, X.; Zhang, C.; Han, Y. Macromol. Rapid Commun. 2004, 25, 1606-1610.
  • 25. Yuan, Z.; Chen, H.; Tang, J.; Zhao, D. J. Appl. Polym. 2009, 113, 126-1632.
  • 26. Furukawa, T.; Sato, H.; Kita, Y.; Matsukawa, K.; Yamaguchi, H.; Ochiai, S.; Siesler, H. W.; Ozaki, Y. Polym. J. 2006, 38, 1127-1136.
  • 27. Orkan U¸car, I.; Erbil, H. Y. Turk. J. Chem. 2013, 37, 643-674.
  • 28. Acikyildiz, M.; Gurses, A.; Yolcu, H. H. Acta Phys. Pol. A 2015, 127, 1156-1160.
  • 29. Kıran¸san, M.; Soltani, R. D. C.; Hassani, A.; Karaca, S.; Khataee, A. J. Taiwan Inst. Chem. Eng. 2014, 45, 2565-2577.