Improving the mechanical and thermal properties of chlorinated poly(vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler

Improving the mechanical and thermal properties of chlorinated poly(vinyl chloride) by incorporating modified CaCO3 nanoparticles as a filler

Chlorinated poly(vinyl chloride) (CPVC)/calcium carbonate nanocomposites were successfully prepared bythe incorporation of calcium carbonate (CaCO3) nanoparticles into the CPVC matrix. The compatibility between the two phases was obtained by surface modification of the CaCO3 nanoparticles with stearic acid, leading to improved material performance. The effects of the addition of different amounts of CaCO3 nanoparticles to the CPVC on the thermal, mechanical, and morphological characteristics of the CPVC/CaCO3 nanocomposites were investigated. The thermal stability of the CPVC/CaCO3 nanocomposites was evaluated by thermogravimetric analysis and differential scanning calorimetry. In addition, the surface texture of the CPVC and the dispersion of the CaCO3 were evaluated using scanning electron microscopy. Important enhancements in the thermal and mechanical properties of the modified CPVC/CaCO3 nanocomposites were obtained by incorporating different amounts (2.00%, 3.75%, and 5.75%) of surfacemodified CaCO3 nanoparticles within the CPVC polymer matrix. The results reveal that 3.75% of CaCO3 was the optimum amount, where the CPVC/CaCO3 nanocomposite shows the highest impact strength, the highest tensile strength, the highest thermal stability, and the lowest elongation percentage.Replacement of the commercial impact modifier used in industry with the prepared surface-modified CaCO3 nanoparticles for the development of CPVC was successfully achieved.

___

  • 1. Mark JE. Ceramic-reinforced polymers and polymer-modified ceramics. Polymer Engineering & Science 1996; 36 (24): 2905-2920. doi: 10.1002/pen.10692
  • 2. Novak BM. Hybrid nanocomposite materials-between inorganic glasses and organic polymers. Advanced Materials 1993; 5 (6): 422-433. doi: 10.1007/s13726-016-0455-3
  • 3. Enayati MS, Behzad T, Sajkiewicz P, Bagheri R, Ghasemi-Mobarakeh L et al. Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment. Iranian Polymer Journal 2016; 25 (7): 647-659. doi: 10.1007/s13726-016-0455-3
  • 4. Hassan TA, Rangari VK, Jeelani S. Mechanical and thermal properties of bio-based CaCO3 /soybean-based hybrid unsaturated polyester nanocomposites. Journal of Applied Polymer Science 2013; 130 (3): 1442-1452. doi: 10.1002/app.39227
  • 5. Puggal S, Dhall N, Singh N, Litt MS. A review on polymer nanocomposites: synthesis, characterization and mechanical properties. Indian Journal of Science and Technology 2016; 9 (4): 1-6. doi: 10.17485/ijst/2016/v9i4/81100
  • 6. Rajabi L, Marzban M, Derakhshan AA. Epoxy/alumoxane and epoxy/boehmite nanocomposites: cure behavior, thermal stability, hardness and fracture surface morphology. Iranian Polymer Journal 2014; 23 (3): 203-215. doi: 10.1007/s13726-013-0216-5
  • 7. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 2017; 7 (4): 74. doi: 10.3390/nano7040074
  • 8. Ren T, Yang J, Huang Y, Ren J, Liu Y. Preparation, characterization, and properties of poly(vinyl chloride)/organophilic-montmorillonite nanocomposites. Polymer Composites 2005; 27 (1): 55-64. doi: 10.1002/pc.20161
  • 9. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering 2008; 39 (6): 933-961. doi: 10.1016/j.compositesb.2008.01.002
  • 10. Liang JZ. Evaluation of dispersion of nano-CaCO3 particles in polypropylene matrix based on fractal method. Composites Part A: Applied Science and Manufacturing 2007; 38 (6): 1502-1506. doi: 10.1016/j.compositesa.2007.01.011
  • 11. Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer 2004; 45 (19): 6665-6673. doi: 10.1016/j.polymer.2004. 07.045
  • 12. Eskizeybek V, Ulus H, Kaybal HB, Şahin ÖS, AvcıA. Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites. Composites Part B: Engineering 2018; 140: 223-231. doi: 10.1016/j.compositesb.2017.12.013
  • 13. Youssef A, Hegazy I, Ramadan A, Abd El-Hakim A. Mechanical enhancement of poly (vinyl chloride) nanocomposites using CaCO3 nanoparticles as impact modifier. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2015; 6 (6): 302-310.
  • 14. Fernando NAS, Thomas NL. Investigation of precipitated calcium carbonate as a processing aid and impact modifier in poly(vinyl chloride). Polymer Engineering & Science 2012; 52 (11): 2369-2374. doi: 10.1002/pen.23191
  • 15. Fekete E, Pukánszky B, Tóth A, Bertóti I. Surface modification and characterization of particulate mineral fillers. Journal of Colloid and Interface Science 1990; 135 (1): 200-208. doi: 10.1016/0021-9797(90)90300-d
  • 16. Fekete E, Móczó J, Pukánszky B. Determination of the surface characteristics of particulate fillers by inverse gas chromatography at infinite dilution: a critical approach. Journal of Colloid and Interface Science 2004; 269 (1): 143-152. doi: 10.1016/S0021-9797(03)00719-7
  • 17. Fernando N, Thomas NL. Effect of precipitated calcium carbonate on the mechanical properties of poly (vinyl chloride). Journal of Vinyl and Additive Technology 2007; 13 (2): 98-102. doi: 10.1002/vnl.20109
  • 18. Fernando P, Williams J. Plane stress and plane strain fractures in polypropylene. Polymer Engineering & Science 1980; 20 (3): 215-220. doi: 10.1002/pen.760200309
  • 19. Ramasamy V, Anand P, Suresh G. Synthesis and characterization of polymer-mediated CaCO3 nanoparticles using limestone: a novel approach. Advanced Powder Technology 2018; 29 (3): 818-834. doi: 10.1016/j.apt.2017.12.023
  • 20. Kamal M, Sharma C, Upadhyaya P, Verma V, Pandey K et al. Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment on mechanical, thermal, and morphological performance of composites. Journal of Applied Polymer Science 2012; 124 (4): 2649-2656. doi: 10.1002/app.35319
  • 21. Thenepalli T, Jun AY, Han C, Ramakrishna C, Ahn JW. A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean Journal of Chemical Engineering 2015; 32 (6): 1009-1022. doi: 10.1007/s11814-015-0057-3
  • 22. Majid F, Elghorba M. HDPE pipes failure analysis and damage modeling. Engineering Failure Analysis 2017; 71: 157-165. doi: 10.1016/j.engfailanal.2016.10.002
  • 23. Kaplan W. Modern Plastics Encyclopedia Handbook. New York, NY, USA: McGraw-Hill, 1994.
  • 24. Brann S, Knight M. Consider CPVC for process applications. Chemical Engineering Progress 1994; 90 (12): 36-41.
  • 25. Premphet K, Horanont P. Phase structure of ternary polypropylene/elastomer/filler composites: effect of elastomer polarity. Polymer 2000; 41 (26): 9283-9290. doi: 10.1016/S0032-3861(00)00303-7
  • 26. Abdolmohammadi S, Siyamak S, Ibrahim NA, Yunus WMZW, Rahman MZA et al. Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. International Journal of Molecular Sciences 2012; 13 (4): 4508-4522. doi: 10.3390/ijms13044508
  • 27. Liu ZP, Cui YY. Study on the performance of CPVC/PMMA blends. Applied Mechanics and Materials 2013; 320: 473-477. doi: 10.4028/www.scientific.net/AMM.320.473
  • 28. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 2000; 28 (1-2): 1-63. doi: 10.1016/S0927-796X(00)00012-7
  • 29. Haldorai Y, Shim JJ, Lim KT. Synthesis of polymer–inorganic filler nanocomposites in supercritical CO2 . Journal of Supercritical Fluids 2012; 71: 45-63. doi: 10.1016/j.supflu.2012.07.007