A novel selective fluorescent chemosensor for Fe3+ ions based on phthalonitrile dimer: synthesis, analysis, and theoretical studies

Phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) was synthesized by the reaction of 1,4-phenylenebisboronic acid (1) and 4-bromo-3,6-dibutoxyphthalonitrile (2), using Suzuki cross-coupling reaction. The newly synthesized compound (3) was characterized by FT-IR, MALDI-MS, ESI-MS, 1H-NMR, 13C-NMR, and 13C-DEPT-135-NMR. The fluorescence property of phenyl-4,4-di(3,6-dibutoxyphthalonitrile) (3) towards various metal ions was investigated by fluorescence spectroscopy, and it was observed thatthe compound (3) displayed a significantly ‘turn-off’ response to Fe3+, which was referred to 1:2 complex formation between ligand (3) and Fe3+. The compound was also studied via density functional theory calculations revealing the interaction mechanism of the molecule with Fe3+ ions.

___

  • Choi YW, 2014, SENSOR ACTUAT B-CHEM, V194, P343, DOI 10.1016/j.snb.2013.12.114
  • Cook MJ, 2000, CHEM-EUR J, V6, P3958, DOI 10.1002/1521-3765(20001103)6:21<3958::AID-CHEM3958>3.0.CO;2-Y
  • Das S, 2016, NEW J CHEM, V40, P6414, DOI 10.1039/c5nj03598h
  • Dong YW, 2017, DALTON T, V46, P6769, DOI 10.1039/c7dt00956a
  • Duran C, 2014, INT J FOOD SCI TECH, V49, P1586, DOI 10.1111/ijfs.12458
  • Gong X, 2020, MICROCHEM J, V152, DOI 10.1016/j.microc.2019.104351
  • Ho JAA, 2012, ANAL CHEM, V84, P3246, DOI 10.1021/ac203362g
  • HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864
  • Iniya M, 2018, CHEMISTRYSELECT, V3, P1282, DOI 10.1002/slct.201702860
  • Iqbal A, 2016, SENSOR ACTUAT B-CHEM, V237, P408, DOI 10.1016/j.snb.2016.06.126
  • Jin L, 2016, RSC ADV, V6, P58394, DOI 10.1039/c6ra08267j
  • Jin XD, 2017, SENSOR ACTUAT B-CHEM, V247, P461, DOI 10.1016/j.snb.2017.03.084
  • Kaya EN, 2014, SENSOR ACTUAT B-CHEM, V194, P377, DOI 10.1016/j.snb.2013.12.044
  • KLEINMAN L, 1982, PHYS REV LETT, V48, P1425, DOI 10.1103/PhysRevLett.48.1425
  • KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133
  • Lee MH, 2010, CHEM COMMUN, V46, P1407, DOI 10.1039/b921526c
  • Lin WY, 2009, ANAL CHIM ACTA, V634, P262, DOI 10.1016/j.aca.2008.12.049
  • Liu YM, 2016, RSC ADV, V6, P111754, DOI 10.1039/c5ra09758d
  • Ly NH, 2017, LUMINESCENCE, V32, P549, DOI 10.1002/bio.3220
  • Ordejon P, 1996, PHYS REV B, V53, P10441, DOI 10.1103/PhysRevB.53.R10441
  • Ozcan E, 2019, SPECTROCHIM ACTA A, V220, DOI 10.1016/j.saa.2019.05.020
  • Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
  • Shi DJ, 2015, ANALYST, V140, P1306, DOI 10.1039/c4an01991a
  • Soler JM, 2002, J PHYS-CONDENS MAT, V14, P2745, DOI 10.1088/0953-8984/14/11/302
  • Spolaor A, 2012, J ANAL ATOM SPECTROM, V27, P310, DOI 10.1039/c1ja10276a
  • TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993
  • Wang CY, 2018, SPECTROCHIM ACTA A, V199, P403, DOI 10.1016/j.saa.2018.03.015
  • Wang W, 2018, TETRAHEDRON LETT, V59, P1860, DOI 10.1016/j.tetlet.2018.04.007
  • Yi FY, 2018, J MATER CHEM C, V6, P2010, DOI 10.1039/c7tc05707e
  • Zhang Y, 2020, J NANOSCI NANOTECHNO, V20, P3340, DOI 10.1166/jnn.2020.17412