Synergism and antagonism in plant acclimation to abiotic stress combinations

Synergism and antagonism in plant acclimation to abiotic stress combinations

Acclimation of plants to their environment involves mechanisms at all molecular levels and only the complete temporal and spatial pattern adequately describes the acclimation state. The diversity of physiological states realized in plants increases by the essentially infinite combinations of abiotic and biotic stresses, considering duration, impact order, and strength. The interference between stressors involves phenomena of synergism, antagonism, and indifference. This review exemplarily sketches principles of interference considering posttranslational modifications, the formation of molecular assemblies in regulosomes, the regulation of gene expression, and the vast number of other posttranscriptional controls e.g., in RNA processing and recruitment to ribosomes. Small molecules such as hormones, reactive molecular species as ROS, ions, and metabolites are decisive players in this network. Available methodology for global analysis combined with machine learning approaches offers a perspective to identify the central regulatory modules, particularly if the multiple layers of molecular regulation are included in parallel, and to better understand the underlying mechanisms of stress interference in an unbiased manner.

___

  • Arnao MB, Hernandez-Ruiz J (2021). Melatonin as a regulatory hub of plant hormone levels and action in stress situations Plant Biology 23 (Suppl. 1): 7–19.
  • Aroca A, Schneider M, Scheibe R, Gotor C, Romero LC (2017). Hydrogen Sulfide Regulates the Cytosolic/Nuclear Partitioning of Glyceraldehyde-3-Phosphate Dehydrogenase by Enhancing its Nuclear Localization. Plant Cell Physiology 58: 983-992. doi:10.1093/pcp/pcx056
  • Babinger K, Hallmann A, Schmitt R (2006). Translational control of regA, a key gene controlling cell differentiation in Volvox carteri, Development 133: 4045-4051.
  • Bai MJ, Sun JJ, Liu JY, Ren HR et al. (2019). The B-box protein BBX19 suppresses seed germination via induction of ABI5. Plant Journal 99: 1192-1202. doi:10.1111/tpj.14415
  • Beer MA, Tavazoie S (2004). Predicting gene expression from sequence. Cell 117: 185-198.doi: 10.1016/S0092- 8674(04)00304-6
  • Berkowitz O, Xu Y, Liew LC, Wang Y et al. (2021). RNA-seq analysis of laser microdissected Arabidopsis thaliana leaf epidermis, mesophyll and vasculature defines tissue-specific transcriptional responses to multiple stress treatments. Plant Journal 261. doi:10.1111/tpj.15314
  • Bor M, Turkan I (2019). Is there a room for GABA in ROS and RNS signalling? Environmental and Experimental Botany 161: 67- 73.
  • Brandman O, Ferrell JE Jr, Li R, Meyer T (2005). Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310: 496-498.
  • Budimir J, Treffon K, Nair A, Thurow C, Gatz C (2021). Redox-active cysteines in TGACG-BINDING FACTOR 1 (TGA1) do not play a role in salicylic acid or pathogen-induced expression of TGA1-regulated target genes in Arabidopsis thaliana. New Phytologist 230: 2420-2432.
  • Chen Y, Liu M, Dong ZC (2021) Preferential ribosome loading on the stress-upregulated mRNA pool shapes the selective translation under stress conditions. Plants 10: 304. doi :10.3390/plants10020304
  • Dehariya P, Kataria S, Guruprasad KN, Pandey GP (2012). Photosynthesis and yield in cotton (Gossypium hirsutum L.) Var. Vikram after exclusion of ambient solar UV-B/A. Acta Physiologia Plantarum 34: 1133-1144.
  • Dietz KJ, Jacquot JP, Harris G (2010). Hubs and bottlenecks in plant molecular signalling networks. New Phytologist 188: 919-938.
  • Filichkin SA, Priest HD, Givan SA, Shen RK (2010). Genomewide mapping of alternative splicing in Arabidopsis thaliana. Genome Research 20: 45-58. doi:10.1101/gr.093302.109
  • Finkelstein RR, Lynch TJ (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. The Plant Cell 12: 599–609.
  • Fonseca S, Rosado A, Vaughan-Hirsch J, Bishopp A, Chini A (2014). Molecular locks and keys: the role of small molecules in phytohormone research. Frontiers in Plant Science 5: 709. doi: 10.3389/fpls.2014.00709
  • Foyer CH, Noctor G (2011). Ascorbate and glutathione: the heart of the redox hub. Plant Physiology 155 (1): 2-18.
  • Giesguth M, Sahm A, Simon S, Dietz KJ (2015). Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Letters 589: 718-725. doi:10.1016/j.febslet.2015.01.039
  • Gorban AN, Pokidysheva LI, Smirnova EV, Tyukina TA (2011). Law of the Minimum Paradoxes. Bulletin of Mathematical Biology 73: 2013-2044. doi:10.1007/s11538-010-9597-1
  • Gosti F, Beaudoin N, Serizet C, Webb AAR, et al. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. The Plant Cell 11: 1897–1910.
  • Gupta KJ, Kolbert Z, Durner J, Lindermayr C, et al. (2019). Regulating the regulator: nitric oxide control of post-translational modifications. New Phytologist 227: 1319-1325.
  • Hackenberg D, Wu YF, Voigt A, Adams R et al. (2012). Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Molecular Plant 5: 876-888. doi:10.1093/mp/ ssr107
  • Hamada T, Yako M, Minegishi M, Sato M et al. (2018). Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. Journal of Cell Science 131: jcs216051. doi:10.1242/jcs.216051
  • Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G et al. (2016). Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Science 242: 214-223. DOI10.1016/j. plantsci.2015.07.018
  • Hussain HA, Men S, Hussain S, Chen Y, et al. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports 9: 3890.
  • Hwang D, Chen HC, Sheen J (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiology 129: 500-515.
  • Kage U, Powell JJ, Gardiner DM, Kazan K (2020). Ribosome profiling in plants: what is not lost in translation? Journal of Experimental Botany 71: 5323-5332. doi:10.1093/jxb/eraa227
  • Kim SC, Guo L, Wang X (2020). Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nature Communications 11: 3439. doi:10.1038/s41467-020-17311-4
  • Ju YL, Min Z, Zhang Y, Zhang KK et al. (2021). Transcriptome profiling provide new insights into the molecular mechanism of grapevine response to heat, drought, and combined stress. Scientia Horticulturae 286: 110076. DOI10.1016/j. scienta.2021.110076.
  • Kitano H, Funahashi A, Matsuoka Y, Oda K (2005). Using process diagrams for the graphical representation of biological networks. Nature Biotechnology 23: 961-966.
  • Klein P, Seidel T, Stocker B, Dietz KJ (2012). The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression. Frontiers in Plant Science 3: 247. DOI10.3389/fpls.2012.00247.
  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013). The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports 32: 945-957.
  • Kumar V, Vogelsang L, Schmidt RR, Sharma SS et al. (2020). Remodeling of root growth under combined arsenic and hypoxia stress is linked to nutrient deprivation. Frontiers in Plant Science 11: 569687.
  • Kumar V, Vogelsang L, Seidel T, Schmidt R et al. (2019). Interference between arsenic-induced toxicity and hypoxia in Arabidopsis thaliana. Plant Cell & Environment 42: 574-590.
  • Kurjan J, Taylor BL (1993). Signal transduction. Prokaryotic and simple eukaryotic systems. San Diego, CA, USA, Academic Press.
  • Lamanna WC, Kalus I, Padva M, Baldwin RJ et al. (2007). The heparanome - The enigma of encoding and decoding heparan sulfate sulfation. Journal of Biotechnology 129: 290-307.
  • Laxmi A, Gupta A, Mishra BS, Singh M et al. (2013) Signal integration, auxin homeostasis and plant development. Chen R, Baluska F (eds.) in: Polar Auxin Transport, Signaling and Communication in Plants 17: 45-79. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-35299-7-3
  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2008). Elevated $CO_2$ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60: 2859-2876.
  • Lengeler JW (2000). Metabolic networks: a signal-oriented approach to cellular models. Biological Chemistry 381: 911-920.
  • Levak V, Lukan T, Gruden K, Coll A (2021). Biosensors: A sneak peek into plant cell’s immunity. Life 11: 209. doi:10.3390/ life11030209
  • Li SW (2021). Molecular bases for the regulation of adventitious root generation in plants. Frontiers in Plant Science 12: 614072. doi:10.3389/fpls.2021.614072
  • Li YJ, Wang GX, Xu ZQ, Li J et al. (2017). Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions. Frontiers Plant Science 8: 1458. doi:10.3389/ fpls.2017.01458
  • Li YP, Yu GW, Lv YN, Long TD et al. (2018). Combinatorial interaction of two adjacent cis-active promoter regions mediates the synergistic induction of Bt2 gene by sucrose and ABA in maize endosperm. Plant Science 274: 332-340.doi: 10.1016/j.plantsci.2018.06.003
  • Liu ZS, Qin JX, Tian XJ, Xu SB, et al. (2018). Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnology Journal 16: 714-726. doi:10.1111/pbi.12822
  • Lubega J, Umbreen S, Loake GJ (2021). Recent advances in the regulation of plant immunity by S-nitrosylation. Journal of Experimental Botany 72, 864-872.
  • Ma Y, Szostkiewicz I, Korte A, Moes D, et al. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324: 1064–1068.
  • Martiáñez T, Francès S, López JM (2009). Generation of digital responses in stress sensors. Journal of Biological Chemistry 284: 23902-23911.
  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296: 910-913.
  • Meyer AJ, Dreyer A, Ugalde JM, Feitosa-Araujo E et al. (2021). Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants-and where to go next. Biological Chemistry 402: 399-423.
  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal 25: 295–303.
  • Meteignier LV, El Oirdi M, Cohen M, Barff TV, et al. (2017). Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis. Journal of Experimental Botany 68: 2333-2344. doi:10.1093/jxb/erx078
  • Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, et al. (2002). Network motifs: simple build-ing blocks of complex networks. Science 298: 824-827.
  • Moore M, Smith A, Wesemann C, Schmidtpott S, et al. (2021). Retrograde control of cytosolic translation targets synthesis of plastid localized proteins and nuclear responses for efficient light acclimation. bioRxiv.doi:10.1101/2021.02.18.431817
  • Mukherjee S, Corpas FJ (2020). Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: A gaseous interactome. Plant Physiology and Biochemistry 155, 800-814. doi:10.1016/j.plaphy
  • Mustroph A, Zanetti ME, Jang CJH, Holtan HE (2009). Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proceedings of the National Academy of Science USA106: 18843-18848. doi:10.1073/pnas.0906131106
  • Oelze ML, Muthuramalingam M, Vogel MO, Dietz KJ (2014). The link between transcript regulation and de novo protein synthesis in the retrograde high light acclimation response of Arabidopsis thaliana. BMC Genomics 15: 320. doi:10.1186/1471-2164-15- 320
  • Okita TW, Nakata PA, Anderson JM, Sowonikos J, et al. (1990). The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiology 93: 785-790.
  • Otu-Larbi F, Conte A, Fares S, Wild O, Ashworth K (2020). Current and future impacts of drought and ozone stress on Northern Hemisphere forests. Global Change Biology 26: 6218-6234.
  • Pandey BK, Verma L, Prusty A, Singh AP, et al. (2021). OsJAZ11 regulates phosphate starvation responses in rice. Planta 254: 8. Perkins TJ, Swain PS (2009). Strategies for cellular decision-making. Molecular Systems Biology 5: 326.
  • Pilpel Y, Sudarsanam P, Church GM (2001). Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics 29: 153-159.doi: 10.1038/ng724.
  • Ribero AAST, Ortiz V (2014). Determination of signaling pathways in proteins through network theory: Importance of the Topology. Journal of Chemical Theory and Computation 10: 1762-1769.
  • Ristova D, Giovannetti M, Metesch K, Busch W (2018) Natural genetic variation shapes root system responses to phytohormones in Arabidopsis. Plant Journal 96: 468-481. doi:10.1111/tpj.14034
  • Rogers A, Dietz KJ, Gifford ML, Lunn JE (2021). The importance of independent replication of treatments in plant science. Journal of Experimental Botany 72: 5270-5274.
  • Romero P, Lafuente MT, Rodrigo MJ (2012). The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. Journal of Experimental Botany 63: 4931-4945.
  • Romero-Puertas MC, Laxa M, Mattè A et al. (2007). S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19: 4120-4130.
  • Roychoudhury A, Banerjee A, Lahiri V (2015). Metabolic and molecular-genetic regulation of proline signaling and its crosstalk with major effectors mediates abiotic stress tolerance in plants. Turkish Journal of Botany 39: 887-910.
  • Schöning JC, Streitner C, Meyer IM, Gao YH, Staiger D (2008). Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research 36: 6977-6987.
  • Seeve CM, Sunkar R, Zheng Y, Liu L et al. (2019). Water-deficit responsive microRNAs in the primary root growth zone of maize. BMC Plant Biology 19: 447. doi:10.1186/s12870-019-2037-y
  • Sewelam N, Brilhaus D, Bräutigam A, Alseekh S et al. (2020). Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes. Journal of Experimental Botany 71: 5098-5112.
  • Shapiguzov A, Vainonen JP, Hunter K , Tossavainen H et al. (2019). Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. 8: e43284.
  • Sharma M, Bhatt D (2015). The circadian clock and defence signalling in plants. Molecular Plant Pathology 16: 210-218.
  • Shpakov AO, Pertseva MN (2008). Signaling systems of lower eukaryotes and their evolution. International Reviews in Cellular Molecular Biology 269: 151-282.
  • Shaikhali J, Noren L, de Dios Barajas-Lopez J, Srivastava V et al. (2012). Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis. Journal of Biological Chemistry 287: 27510-27525
  • Shearer HL, Cheng YT, Wang L, Liu J et al. (2012). Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1- independent fashion. Molecular Plant–Microbe Interactions 25: 1459–1468.
  • Shrestha A, Khan A, Dey N (2018). cis-trans Engineering: Advances and perspectives on customized transcriptional regulation in plants. Molecular Plant 11: 886-898.doi: 10.1016/j. molp.2018.05.008
  • Sielemann J, Wulf D, Schmidt R, Bräutigam A (2021). Local DNA shape is a general principle of transcription factor binding specificity in Arabidopsis thaliana. bioRxiv, doi: doi. org/10.1101/2020.09.29.318923.
  • Su C, Liu L, Liu H, Ferguson BJ et al. (2016). $H_2O_2$ regulates root system architecture by modulating the polar transport and redistribution of auxin. Journal of Plant Biology 59: 260-270
  • Sun C, Liu L, Wang L, Li B, Jin C, Lin X (2021). Melatonin: A master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63: 126-145.
  • Sunkar R, Li YF, Jagadeeswaran G (2012). Functions of microRNAs in plant stress responses. Trends Plant Science 17: 196-203.
  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014). Abiotic and biotic stress combinations. New Phytologist 203: 32-43.
  • Szechynska-Hebda M, Wasek I, Golebiowska-Pikania G, Dubas E et al. (2014). Photosynthesis-dependent physiological and genetic crosstalk between cold acclimation and cold-induced resistance to fungal pathogens in triticale (Triticosecale Wittm.). Journal of Plant Physiology 177: 30-43.
  • Teixeira AI, George M, Herreman T, Brown H et al. (2014). The impact of water and nitrogen limitation on maize biomass and resource-use efficiencies for radiation, water and nitrogen. Field Crop Research 168: 109-118.
  • Testard A, Da Silva D, Ormancey M, Pichereaux C et al. (2016). Calcium- and nitric oxide-dependent nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in response to long chain bases in tobacco BY-2 cells. Plant Cell Physiology 57: 2221-2231.
  • Um SH, Frigerio F, Watanabe M, Picard F et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431: 200-205.
  • Van Aken O, Zhang BT, Carrie C, Uggalla V et al. (2009). Defining the Mitochondrial Stress Response in Arabidopsis thaliana. Molecular Plant 2: 1310-1324. doi:10.1093/mp/ssp053
  • Vandereyken K, Van Leene J, De Coninck B, Cammue BPA (2018). Hub protein controversy: taking a closer look at plant stress response hubs. Frontiers in Plant Science 9: 694.
  • Vescovi M, Zaffagnini M, Festa M, Trost P et al. (2013). Nuclear accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in cadmium-stressed Arabidopsis roots. Plant Physiology 162: 333–346.
  • Vogel MO, Gomez-Perez D, Probst N, Dietz KJ (2012). Combinatorial signal integration by APETALA2/Ethylene Response Factor (ERF)-transcription factors and the involvement of AP2-2 in starvation response. International Journal of Molecular Sciences 13: 5933-5951.
  • Vladimirov N, Sourjik V (2009). Chemotaxis: How bacteria use memory. Biological Chemistry 390: 1097-1104.
  • Waese J, Fan J, Pasha A, Yu H, Fucile G et al. (2017). ePlant: visualizing and exploring multiple levels of data for hypothesis Generation in Plant Biology. Plant Cell 29: 1806-1821.
  • Wagner S, Steinbeck J, Fuchs P, Lichtenauer S et al. (2019). Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. New Phytologist 224: 1668-1684. doi:10.1111/nph.16093
  • Wany A, Kumari A, Gupta KJ (2017). Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress. Plant Cell and Environment 40, 3002-3017.
  • Wawer I, Bucholc M, Astier J, Anna Anielska-Mazur A, et al. (2010). Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. The Biochemical Journal 429, 73–83. doi:10.1042/BJ20100492
  • Weber C, Nover L, Fauth M (2008). Plant stress granules and mRNA processing bodies are distinct from heat stress granules. Plant Journal 56: 517-530. doi:10.1111/j.1365-313X.2008.03623.x
  • Wulf D, Bräutigam A (2020). Machine learning based comparative analysis of gene regulatory networks in monocots. Plant and Animal Genome XXVIII Conference, Proceedings, W510.
  • Xu D, Li J, Gangappa SN, Hettiarachchi C, Lin F et al. (2014). Convergence of light and ABA signaling on the ABI5 promoter. PLoS Genet. 10: e1004197
  • Yoshida T, Nishimura N, Kitahata N, Kuromori T, Ito T et al. (2006). ABA Hypersensitive Germination 3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiology 140: 115-126.
  • Yu RC, Pesce CG, Colman-Lerner A, Lok L, et al. (2008). Negative feedback that improves information transmission in yeast signalling. Nature 456: 755-761. doi:10.1038/nature07513
  • Yu SG, Kim JH, Cho NH, Oh TR (2020). Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress. Plant Journal 103: 824-842. doi:10.1111/tpj.14775
  • Yu X, Li B, Jang GJ, Jiang S (2019). Orchestration of processing body dynamics and mRNA decay in Arabidopsis immunity. Cell Reports 28: 2194-2205. doi:10.1016/j.celrep.2019.07.054
  • Yu YW, Wang J, Shi H, Gu JT et al. (2016). Salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1 to control seed germination. Plant Physiology 170: 2340-2350. doi:10.1104/pp.15.01724
  • Zaffagnini M; Morisse S, Bedhomme M, Marchand CH et al. (2013). Mechanisms of nitrosylation and denitrosylation of cytoplasmic glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. Journal of Biological Chemistry 288: 22777-22789.
  • Zaffagnini M, Marchand CH, Malferrari M, Murail S et al. (2019). Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates. Proceedings of the National Academy of Science 116: 26057– 26065.
  • Zhou XR, Joshi S, Patil S, Khare T et al. (2021). Reactive oxygen, nitrogen, carbonyl and sulfur species and their roles in plant abiotic stress responses and tolerance. Journal of Plant Growth Regulation, early online, doi 10.1007/s00344-020-10294-y
  • Zou C, Sun K, Mackaluso JD, Seddon AE et al. (2011). Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proceedings of the National Academy of Science USA 108: 14992-14997. doi: 10.1073/pnas.1103202108
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Physiological, biochemical, and metabolic responses of abiotic plant stress: salinity and drought

Kiarash Jamshidi GOHARRIZI, Michael R HAMBLIN, Soraya KARAMI, Maryam NAZARI

Habitat variation and vulnerability of Quercus brantii woodlands in the Zagros Mountains, Iran

Roghayeh ZOLFAGHARI, Payam FAYYAZ, Erwin BERGMEIER, Esfandiar JAHANTAB

Synergism and antagonism in plant acclimation to abiotic stress combinations

Karl Josef DIETZ

Altered water relations, selective nutrient uptake, and reduced Na+ flux make Halopeplis perfoliata an obligate halophyte

Abdul HAMEED, Muhameed Zaheer AHMED, Bilquees GUL, Sarwat Ghulam RASOOL

Proteomic analysis reveals different responses to drought between the Cleome spinosa (C3) and Cleome gynandra (C4)

Hakan TERZİ, Mustafa YILDIZ, Fadimana KAYA

Evaluation of the effects of temperature, light, and UV-C radiation on HSP70A expression in Chlamydomonas reinhardtii

Elif DEMİRKAN, Tuba SEVGİ

Identification and characterization of the Pvul-GASA gene family in the Phaseolus vulgaris and expression patterns under salt stress

Emre İLHAN, Aybüke OKAY, Emine Sümer ARAS, Marta GORSKA, İlker BÜYÜK

Manipulation of lipophilic antioxidants to enhance oxidative stress tolerance and nutritional quality in transgenic sweetpotato

Ho Soo KIM, So Eun KIM, Chan Ju LEE, Sul U PARK, Xiaofeng BIAN, Yizhi XIE, Sang Soo KWAK, Barış UZİLDAY, Rengin Özgür UZİLDAY

The trade-off between UVB sensitivity and tolerance against other stresses in African rice species

Gideon Sadikiel MMBANDO, Jun HIDEMA

Interactive effects of salinity and plant density on the growth of Cyperus arenarius, a sand dune stabilizer

Muhammad Zaheer AHMED, Farhat AGHA, Bilquees GUL, Muhammad Ajmal KHAN