Proteomic analysis reveals different responses to drought between the Cleome spinosa (C3) and Cleome gynandra (C4)

Proteomic analysis reveals different responses to drought between the Cleome spinosa (C3) and Cleome gynandra (C4)

The global emergence of low water availability causes extensive damage to crops in many regions. Although the responses of plants to drought stress have been extensively investigated, molecular studies on plants with different carboxylation pathways are limited. Therefore, we aimed to identify quantitative differences in proteins functioning in differential drought tolerance of C3 (Cleome spinosa) and C4 (C. gynandra) species. Proteomic analysis functionally characterized 33 differentially accumulated proteins in C. spinosa and 15 proteins in C. gynandra leaves. The identified proteins were involved in multiple aspects of leaf metabolism such as photosynthesis, energy metabolism, protein metabolism, and stress defense. The up-regulated accumulation of RuBisCO proteins may have contributed to carboxylation in stressed C. spinosa, but RuBisCO activase proteins were severely down-regulated. Additionally, down-regulation of ferredoxin-nicotinamide adenine dinucleotide phosphate (NADP) reductase and oxygen-evolving enhancer proteins was only found in C. spinosa, which possibly related to the inhibition of electron flow. The up-regulation of enolase may contribute to the energy requirement in C. gynandra, while down-regulation of glycolytic enzymes, such as fructose-bisphosphate aldolase and triosephosphate isomerase, was found in C. spinosa suggesting the impaired energy metabolism under drought stress. The proteomic analysis suggests different adaptive strategies between C. spinosa and C. gynandra against drought stress.

___

  • Ashraf M, Akram NA, Al-Qurainy F, Foolad MR (2011). Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. Advances in Agronomy 111: 249-296. doi: 10.1016/B978-0-12-387689-8.00002-3
  • Bradford MM (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Analytical Biochemistry 72: 248-254. doi: 10.1006/abio.1976.9999
  • Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D et al. (2011). An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species. Plant Physiology 155: 142. doi: 10.1104/pp.110.159442
  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J et al. (2010). New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Annals of Botany 105: 811-822. doi:10.1093/aob/mcp128
  • Brown NJ, Parsley K, Hibberd JM (2005). The future of C4 research – maize, Flaveria or Cleome? Trends in Plant Science 10: 215- 221. doi: 10.1016/j.tplants.2005.03.003
  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM et al. (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333. doi: 10.1002/elps.200305844
  • Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X et al. (2016). Expression of OsMYB55 in maize activates stressresponsive genes and enhances heat and drought tolerance. BMC Genomics 17: 312. doi: 10.1186/s12864-016-2659-5
  • Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought- from genes to the whole plant. Functional Plant Biology 30: 239-264. doi: 10.1071/FP02076
  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP et al. (1996). S-Adenosylmethionine and methylation. FASEB Journal 10: 471-480. doi: 10.1096/fasebj.10.4.8647346
  • Chintakovid N, Maipoka M, Phaonakrop N, Mickelbart MV, Roytrakul S et al. (2017). Proteomic analysis of droughtresponsive proteins in rice reveals photosynthesis-related adaptations to drought stress. Acta Physiologiae Plantarum 39 (10): 1-13. doi: 10.1007/s11738-017-2532-4
  • Cui S, Hu J, Guo S, Wang J, Cheng Y et al. (2012). Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration. Journal of Experimental Botany 63 (2): 711- 726. doi: 10.1093/jxb/err296
  • Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA et al. (2015). Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. Journal of Proteomics 114: 1-15. doi: 10.1016/j.jprot.2014.10.018
  • Hanke G, Mulo P (2013). Plant type ferredoxins and ferredoxindependent metabolism. Plant, Cell and Environment 36: 1071- 1084. doi: 10.1111/pce.12046
  • Hurkman WJ, Tanaka CK (1986). Solubilization of plant membrane proteins for analysis of two-dimensional gel electrophoresis. Plant Physiology 81: 802-806. doi: 10.1104/pp.81.3.802
  • Katam R, Sakata K, Suravajhala P, Pechan T, Kambiranda DM et al. (2016). Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress. Journal of Proteomics 143: 209-226. doi: 10.1016/j.jprot.2016.05.031
  • Kausar R, Arshad M, Shahzad A, Komatsu S (2013). Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 44: 345-359. doi: 10.1007/s00726- 012-1338-3
  • Khodadadi E, Fakheri BA, Aharizad S, Emamjomeh A, Norouzi M et al. (2017). Leaf proteomics of drought-sensitive and -tolerant genotypes of fennel. Biochimica et Biophysica Acta 1865 (11): 1433-1444. doi: 10.1016/j.bbapap.2017.08.012
  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K et al. (2009). The role of annexin 1 in drought stress in Arabidopsis. Plant Physiology 150: 1394-1410. doi: 10.1104/pp.109.135228
  • Kotusov VV, Kukhanova MK, Krayevsky AA, Gottikh BP (1976). Catalysis of the peptide bond formation by 50S subunits of E. Coli ribosomes with N-(formil) methionine ester of adenylic acid as peptide donor. Molecular Biology Reports 3: 151-156. doi: 10.1007/BF00423229
  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A et al. (2007). Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany 58: 1271-1279. doi: 10.1093/jxb/erl280
  • Li F, Wu QY, Duan M, Dong XC, Li B et al. (2012). Transgenic tomato plants overexpressing chloroplastic monodehydroascorbate reductase are resistant to salt- and PEG-induced osmotic stress. Photosynthetica 50 (1): 120-128. doi: 10.1007/s11099- 012-0021-y
  • Lisenbee CS, Lingard MJ, Trelease RN (2005). Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Planta 43: 900-914. doi: 10.1111/j.1365-313X.2005.02503.x
  • Maere S, Heymans K, Kuiper M (2005). BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21: 3448-3449. doi: 10.1093/bioinformatics/bti551
  • Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S et al. (2007). Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C3 to C4 photosynthesis. Plant Journal 51: 886-896. doi: 10.1111/j.1365- 313X.2007.03188.x
  • Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR et al. (2013). Integrated proteomic analysis of post-translational modifications by serial enrichment. Nature Methods 10: 634- 637. doi: 10.1038/nmeth.2518
  • Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific Reports 8 (1): 5710. doi: 10.1038/s41598-018-24012-y
  • Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C et al. (2008). Annexins: multifunctional components of growth and adaptation. Journal of Experimental Botany 59 (3): 533- 544. doi: 10.1093/jxb/erm344
  • Moyo M, Amoo SO, Aremu AO, Gruz J, Šubrtová M et al. (2018). Determination of mineral constituents, phytochemicals and antioxidant qualities of Cleome gynandra, compared to Brassica oleracea and Beta vulgaris. Frontiers in Chemistry 5: 128. doi: 10.3389/fchem.2017.00128
  • Nishiyama Y, Murata N (2014). Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied Microbiology and Biotechnology 98: 8777-8796. doi: 10.1007/ s00253-014-6020-0
  • Ochuodho JO, Modi AT, Beukes M (2006). Accumulation of storage proteins of Cleome gynandra and Brassica kaber. South African Journal of Plant Soil 76: 238-244. doi: 10.1016/j. sajb.2005.09.001
  • Patel M, Corey AC, Yin LP, Ali S, Taylor WC et al. (2004). Untranslated regions from C4 Amaranth AhRbcS1 mRNAs confer translational enhancement and preferential bundle sheath cell expression in transgenic C4 Flaveria bidentis. Plant Physiology 136: 3550-3561. doi: 10.1104/pp.104.051508
  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG et al. (2011). Rapid growth in $CO_2$ emissions after the 2008–2009 global financial crisis. Nature Climate Change 2: 2-4. doi: 10.1038/nclimate1332
  • Rowlett RS (2010). Structure and catalytic mechanism of the betacarbonic anhydrases. Biochimica et Biophysica Acta 1804 (2):362-373. doi: 10.1016/j.bbapap.2009.08.002
  • Roy A, Rushton PJ, Rohila JS (2011). The potential of proteomics technologies for crop improvement under drought conditions. Critical Reviews in Plant Sciences 30: 471-490. doi: 10.1080/07352689.2011.605743
  • Scheibe R (2004). Malate valves to balance cellular energy supply. Physiologia Plantarum 120: 21-26. doi: 10.1111/j.0031- 9317.2004.0222.x
  • Silva APS, Nascimento da Silva LC, Martins da Fonseca CS, Araújo JM, Correia MTS et al. (2016). Antimicrobial activity and phytochemical analysis of organic extracts from Cleome spinosa Jaqc. Frontiers in Microbiology 7: 963. doi: 10.3389/ fmicb.2016.00963
  • Sinha P, Poland J, Schnölzer M, Rabilloud T (2001). A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 1: 835-840. doi: 10.1002/1615-9861(200107)1:7<835::AIDPROT835>3.0.CO;2-2
  • Stuart ME, Gooddy DC, Bloomfield JP, Williams AT (2011). A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment 409: 2859-2873. doi: 10.1016/j.scitotenv.2011.04.016
  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A et al. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research 39: 561-568. doi: 10.1093/nar/gkq973
  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401: 914-917. doi: 10.1038/44842
  • Urban MO, Vašek J, Klíma M, Krtková J, Kosová K et al. (2017). Proteomic and physiological approach reveals droughtinduced changes in rapeseeds: Water-saver and water-spender strategy. Journal of Proteomics 152: 188-205. doi: 10.1016/j. jprot.2016.11.004
  • Uzilday B, Turkan I, Sekmen AH, Ozgur R, Karakaya HC (2012). Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress. Plant Science 182 (1): 59-70. doi: 10.1016/j. plantsci.2011.03.015
  • Uzilday B, Turkan I, Ozgur R, Sekmen AH (2014). Strategies of ROS regulation and antioxidant defense during transition from C3 to C4 photosynthesis in the genus Flaveria under PEG-induced osmotic stress. Journal of Plant Physiology 171 (1): 65-75. doi: 10.1016/j.jplph.2013.06.016
  • Wang X, Cai X, Xu C, Wang Q, Dai S (2016). Drought-responsive mechanisms in plant leaves revealed by proteomics. International Journal of Molecular Sciences 17: 1706. doi: 10.3390/ijms17101706
  • Wang X, Komatsu S (2018). Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. Journal of Proteomics 172: 201-215. doi: 10.1016/j. jprot.2017.11.006
  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999). Comparative responses of model C3 and C4 plants to drought in low and elevated $CO_2$. Global Change Biology 5: 857-867. doi: 10.1046/j.1365-2486.1999.00270.x
  • Weckwerth W (2011). Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. Journal of Proteomics 75: 284-305. doi: 10.1016/j.jprot.2011.07.010
  • Xin L, Zheng H, Yang Z, Guo J, Liu T et al. (2018). Physiological and proteomic analysis of maize seedling response to water deficiency stress. Journal of Plant Physiology 228: 29-38. doi: 10.1016/j.jplph.2018.05.005
  • Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005). The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. Journal of Biological Chemistry 280: 16170-16174. doi: 10.1074/jbc.M501550200
  • Yu S, Zhang X, Guan Q, Takano T, Liu S (2007). Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnology Letters 29: 89-94. doi: 10.1007/s10529-006-9199-z
  • Zadražnika T, Hollung K, Egge-Jacobsen W, Meglič V, ŠuštarVozlič J (2013). Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). Journal of Proteomics 78: 254-272. doi: 10.1016/j. jprot.2012.09.021
  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162 (1): 2-12. doi: 10.1111/ppl.12540
  • Zhang X, Liu S, Takano T (2008). Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana. Biotechnology Letters 30: 1289- 11294. doi: 10.1007/s10529-008-9685-6
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Physiological, biochemical, and metabolic responses of abiotic plant stress: salinity and drought

Kiarash Jamshidi GOHARRIZI, Michael R HAMBLIN, Soraya KARAMI, Maryam NAZARI

Identification and characterization of the Pvul-GASA gene family in the Phaseolus vulgaris and expression patterns under salt stress

Emre İLHAN, Aybüke OKAY, Emine Sümer ARAS, Marta GORSKA, İlker BÜYÜK

Interactive effects of salinity and plant density on the growth of Cyperus arenarius, a sand dune stabilizer

Muhammad Zaheer AHMED, Farhat AGHA, Bilquees GUL, Muhammad Ajmal KHAN

The trade-off between UVB sensitivity and tolerance against other stresses in African rice species

Gideon Sadikiel MMBANDO, Jun HIDEMA

Manipulation of lipophilic antioxidants to enhance oxidative stress tolerance and nutritional quality in transgenic sweetpotato

Ho Soo KIM, So Eun KIM, Chan Ju LEE, Sul U PARK, Xiaofeng BIAN, Yizhi XIE, Sang Soo KWAK, Barış UZİLDAY, Rengin Özgür UZİLDAY

Proteomic analysis reveals different responses to drought between the Cleome spinosa (C3) and Cleome gynandra (C4)

Hakan TERZİ, Mustafa YILDIZ, Fadimana KAYA

Habitat variation and vulnerability of Quercus brantii woodlands in the Zagros Mountains, Iran

Roghayeh ZOLFAGHARI, Payam FAYYAZ, Erwin BERGMEIER, Esfandiar JAHANTAB

Altered water relations, selective nutrient uptake, and reduced Na+ flux make Halopeplis perfoliata an obligate halophyte

Abdul HAMEED, Muhameed Zaheer AHMED, Bilquees GUL, Sarwat Ghulam RASOOL

Synergism and antagonism in plant acclimation to abiotic stress combinations

Karl Josef DIETZ

Evaluation of the effects of temperature, light, and UV-C radiation on HSP70A expression in Chlamydomonas reinhardtii

Elif DEMİRKAN, Tuba SEVGİ