Pollen and seed morphology of resurrection plants from the genus Ramonda (Gesneriaceae): relationship with ploidy level and relevance to their ecology and identification

The pollen and seeds of 3 paleoendemic resurrection species, Ramonda myconi (L.) Rchb. (Iberian Peninsula), R. nathaliae Pancic & Petrovic, and R. serbica Pancic (Balkan Peninsula), as well as of natural hybrids between the 2 last species, have been analyzed using light and scanning electron microscopy. Their general structural differences, taxonomic and phylogenetic significance, pollen viability, and seed germination capacity, as well as the correlation of pollen and seed characteristics and plant ploidy levels, have been studied. The pollen grains are small (R. myconi, R. nathaliae) to medium (R. serbica) in size, ranging from 10 to 28 µm, and 3-colporate, isopolar monads with microreticulate-perforate exine. Seeds are small, 309 to 1000 µm long and 80 to 425 µm wide, elongated, with a reticulate surface and auriculate ornamentation. Micromorphologies of the pollen exine ornamentation and seed surface revealed significant differences among the 3 species. Pollen from hybrid individuals was heterogeneous in size and morphology, and the germination of their tiny seeds was very low. A strong correlation was found between pollen size, DNA content, and chromosome number. The environmental influence on pollen and seeds of 3 species and especially of the R. nathaliae population growing on serpentine is also discussed.

Pollen and seed morphology of resurrection plants from the genus Ramonda (Gesneriaceae): relationship with ploidy level and relevance to their ecology and identification

The pollen and seeds of 3 paleoendemic resurrection species, Ramonda myconi (L.) Rchb. (Iberian Peninsula), R. nathaliae Pancic & Petrovic, and R. serbica Pancic (Balkan Peninsula), as well as of natural hybrids between the 2 last species, have been analyzed using light and scanning electron microscopy. Their general structural differences, taxonomic and phylogenetic significance, pollen viability, and seed germination capacity, as well as the correlation of pollen and seed characteristics and plant ploidy levels, have been studied. The pollen grains are small (R. myconi, R. nathaliae) to medium (R. serbica) in size, ranging from 10 to 28 µm, and 3-colporate, isopolar monads with microreticulate-perforate exine. Seeds are small, 309 to 1000 µm long and 80 to 425 µm wide, elongated, with a reticulate surface and auriculate ornamentation. Micromorphologies of the pollen exine ornamentation and seed surface revealed significant differences among the 3 species. Pollen from hybrid individuals was heterogeneous in size and morphology, and the germination of their tiny seeds was very low. A strong correlation was found between pollen size, DNA content, and chromosome number. The environmental influence on pollen and seeds of 3 species and especially of the R. nathaliae population growing on serpentine is also discussed.

___

  • Alexander MP (1969). Differential staining of aborted and nonaborted pollen. Stain Technol 44: 117–122.
  • Altınözlü H, Karagöz A, Polat T, Ünver İ (2012). Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36: 269–280.
  • Avcı S, Sancak C, Can A, Acar A, Pınar NM (2013). Pollen morphology of the genus Onobrychis (Fabaceae) in Turkey. Turk J Bot 37: 669–681.
  • Barthlott W (1981). Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. Nord J Bot 1: 345–355.
  • Beaufort-Murphy HT (1983). The seed-surface morphology of the Gesneriaceae, utilizing the scanning electric microscope and a new system for diagnosing seed morphology. Selbyana 6: 220–422.
  • Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007). Correlated evolution of genome size and seed mass. New Phytol 173: 422–437.
  • Brady KU, Kruckeberg AR, Bradshow HD Jr (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol S 36: 243–266.
  • Brochmann C (1992). Pollen and seed morphology of Nordic Draba (Brassicaceae): phylogenetic and ecological implications. Nord J Bot 12: 657–673.
  • Brooks RR (1987). Serpentine and Its Vegetation: A Multidisciplinary Approach. Oregon, Portland: Dioscorides Press.
  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003). Nuclear DNA content and genome size of trout and human. Cytometry 51A: 127–128.
  • Dubreuil M, Riba M, Mayol M (2008). Genetic structure and diversity in Ramonda myconi (Gesneriaceae): effects of historical climate change on a preglacial relict species. Am J Bot 95: 577–587.
  • Erdtman G (1943). An Introduction to Pollen Analysis. Waltham, MA, USA: Chronica Botanica Company.
  • Erdtman G (1952). Pollen Morphology and Plant Taxonomy. Angiosperms (An Introduction to Palynology). Stockholm, Sweden: Almqvist & Wiksel.
  • Fourney da Silva AC, Mendonça CBF, Lopes TCC, GonçalvesEsteves V (2010). Palinologia de éspecies de Gesneriaceae Rich. & Juss. ocorrentes no estado do Rio de Janeiro. Acta Bot Bras 24: 812–824 (in Portuguese).
  • Fritze K, Williams NH (1988). The taxonomic significance of pollen morphology in the Columnea alliance (Gesneriaceae: Gesnerioideae). Ann Mo Bot Gard 75: 168–191.
  • Fuchs MCP, de Sousa SM, Sanmartin-Gajardo I, Viccini LF (2011). Chromosome number in meiotic stage cells and pollen viability of Vanhouttea hilariana Chautems, Vanhouttea brueggeri Chautems and an interespecific hybrid (Gesneriaceae). An Biol 33: 35–40.
  • Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, FroschRadivo A, Ulrich S (2009). Pollen Terminology. An Illustrated
  • Handbook. Vienna: Springer-Verlag. Knight CA, Beaulieu JM (2008). Genome size scaling through phenotype space. Ann Bot London 101: 759–766.
  • Košanin N (1921). La distribution géographique des deux espèces de Ramondia du Balkan. Belgrade: Academie des Sciences et Arts (in French).
  • Kvist LP, Skog LE (1992). Revision of Kohleria (Gesneriaceae). Sm C Bot 79: 1–83.
  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010). The evolution of seeds. New Phytol 186: 817–831.
  • Luegmayr E (1993a). Pollen characters of Old World Gesneriacea (Cyrtandroideae). Grana 32: 221–232.
  • Luegmayr E (1993b). Pollen of Hawaiian Cyrtandra (Gesneriaceae), including notes on Southeast Asian taxa. Blumea 38: 25–38.
  • Mancuso E, Bedini G, Peruzzi L (2012). Morphology, germination, and storage behaviour in seeds of Tuscan populations of Fritillaria montana (Liliaceae), a rare perennial geophyte in Italy. Turk J Bot 36: 161–166.
  • Melhelm T, Mauro C (1973). Pollen morphological studies in Gesneriaceae. Hoehnea 3: 13–27.
  • Möller M, Pfosser M, Jang CG, Mayer V, Clark A, Hollingsworth ML, Barfuss MHJ, Wang Y-Z, Kiehn M, Weber A (2009). A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: incongruence with available tribal classifications. Am J Bot 96: 989–1010.
  • Pico FX, Riba M (2002). Regional-scale demography of Ramonda myconi: remnant population dynamics in a preglacial relict species. Plant Ecol 161: 1–13.
  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007). Glossary of pollen and spore terminology. Rev Palaeobot Palyno 143: 1–81.
  • Schlag-Edler B, Kiehn M (2001). Palynology of South Pacific Cyrtandra (Gesneriaceae) with notes on some Hawaiian taxa. Grana 40: 192–196.
  • Siljak-Yakovlev S, Stevanovic V, Tomasevic M, Brown SC, Stevanovic B (2008). Genome size variation and polyploidy in the resurrection plant genus Ramonda: cytogeography of living fossils. Environ Exp Bot 62: 101–112.
  • Sontag S, Weber A (1998). Seed coat structure of Didissandra, Ridleyandra and Raphiocarpus (Gesneriaceae). Beitr Biol Pflanz 70: 179–190.
  • Stevanović V, Niketić M, Stevanović B (1986a). On distribution of endemic and relic species Ramonda serbica Panč. in SR Macedonia. Bull Nat Hist Mus Belgrade Ser B 41: 89–95.
  • Stevanović V, Niketić M, Stevanović B (1986b). Sympatric area of the sibling and endemo-relic species Ramonda serbica Panč. and R. nathaliae Panč. et Petrov. (Gesneriaceae) in southeast Serbia
  • (Yugoslavia). Bull Inst Jard Bot Univ Beograd 20: 45–54. Stevanović V, Niketić M, Stevanović B (1991). Chorological differentiation of endemo-relic species Ramonda serbica Panč. and R. nathaliae Panč. et Petrov. (Gesneriaceae) on the Balkan peninsula. Bot Chronica 10: 507–515.
  • Stevanović V, Stevanović B (1985). Asplenio cuneifolii-Ramondaetum nathaliae - new chasmophytic community on serpentine rocks in Macedonia. Bull Nat Hist Mus Belgrade Ser. B 40: 75–87.
  • Tatić B, Stefanović M (1976). Chemical analysis of stones and soil of the habitats of Ramonda species in Yugoslavia. Bull Inst Jard Bot Univ Beograd 11: 127–131.
  • Wang YZ, Liang RH, Wang BH, Li JM, Qiu ZJ, Li ZY, Weber A (2010). Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59: 1044–1052.
  • Weber A (2004). Gesneriaceae. In: Kubitzki K, Kadereit JW, editors.
  • The Families and Genera of Vascular Plants, Volume VII, Flowering Plants Dicotyledones, Lamiales (except Acanthaceae including Avicenniaceae). Berlin-Heidelberg-New York: Springer, pp. 63–95. Williams NH (1978). Pollen structure and the systematics of the neotropical Gesneriaceae. Selbyana 2: 310–322.
  • Zhang XY, Hu CG, Yao JL (2010). Tetraplodization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J Plant Physiol 167: 88–94.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Role of exogenous glycinebetaine and humic acid in mitigating drought stress-induced adverse effects in Malus robusta seedlings

Lixin ZHANG, Mei GAO, Linsen ZHANG, Binzhi LI, Mingyu HAN, Ashok Kumar ALVA, Muhammad ASHRAF

Three pyronemataceous macrofungi genera new to Turkish Mycota

Ilgaz AKATA, Abdullah KAYA

Comparative anatomy of elaiophores and oil secretion in the genus Gomesa (Orchidaceae)

Natalia Elva GOMIZ, Juan Pablo TORRETTA, Sandra Silvina ALISCIONI

Cadmium detoxification in Populus × canescens

Hui-Ping DAI, Chan-Juan SHAN, Genliang JIA, Chao LU, Tu-Xi YANG, An-Zhi WEI

Phytotoxic effects of herbicide Attribut and surfactant BioPower on the root, stem, and leaf anatomy of Triticum aestivum Pehlivan'

Gülden YILMAZ, Feruzan DANE

Contributions to lichen diversity of Turkey from the Sarısu area (Kocaeli)

Gülşah ÇOBANOĞLU, Birkan AÇIKGÖZ, Laurentiu BALONIU

Pollen and seed morphology of resurrection plants from the genus Ramonda (Gesneriaceae): relationship with ploidy level and relevance to their ecology and identification

Maja LAZAREVIC, Sonja SILJAK-YAKOVLEV, Predrag LAZAREVIC

Identification of benzoin obtained from calli of Styrax officinalis by HPLC

Hatice DEMİRAY, Aylin EŞİZ DEREBOYLU, Zekiye Işın YAZICI, Fatih KARABEY

Astragalus yukselii (Leguminosae), a new species from Turkey

Seher KARAMAN ERKUL, Zeki AYTAÇ

Ecophysiology of the holoparasitic angiosperm Cistanche phelypaea (Orobancaceae) in a coastal salt marsh

Gamal Mohammad FAHMY