Phytoplankton dynamics and structure, and ecological status estimation by the Qassemblage index: a comparative analysis in two shallow Mediterranean lakes

Phytoplankton dynamics and structure, and ecological status estimation by the Qassemblage index: a comparative analysis in two shallow Mediterranean lakes

The aim of this research was to compare the phytoplankton structure on the basis of environmental variables and test the Qassemblage index based on phytoplankton functional groups in two shallow Mediterranean lakes [Lake Taşkısığı (LT) and Lake Little Akgöl (LLA)] in the north of Turkey. Variations in the phytoplankton structure and environmental parameters were analyzed monthly at two stations of each lake between January 2013 and December 2013. We showed that total phosphorus (TP) values were vital in shaping phytoplankton biomass in eutrophic LLA. Nitrate-nitrogen (NO3-N), TP, zmix/zeu,and macrophyte coverage are important in shaping the differences in dominant phytoplankton functional groups between two lakes. Generally, diversity values were similar between the two lakes and environmental parameters had no effect on diversities to constitute significant differences. The assessment using the Q index gave compatible results for determining the ecological status of LT and LLA.

___

  • Allan RJ, Williams JDH, Joshi SR, Warwick WF (1980). Historical changes and relationship to internal loading of sediment phosphorus forms in hypertrophic prairie lakes. J Environ Qual 9: 199-206.
  • Aykulu G, Doğan K, Hasırcı S (1999). Taşkısı ve Poyrazlar Göllerinin (Adapazarı-Türkiye) fitoplankton topluluklarının incelenmesi. İstanbul Üniversitesi Su Ürünleri Dergisi 157-184 (in Turkish).
  • Becker V, Huszar VLM, Crossetti LO (2009). Responses of phytoplankton functional groups to the mixing in a deep subtropical reservoir. Hydrobiologia 628: 137-151.
  • Borics G, Lukács BA, Grigorszky I, László-Nagy Z, G-Tóth L, Bolgovics Á, Szabó S, Görgényi J, Várbíró G (2014). Phytoplankton-based shallow lake types in the Carpathian basin: steps towards a bottom-up typology. Fund Appl Limnol 184: 23-34.
  • Borics G, Nagy L, Miron S, Grigorszky I, László-Nagy Z, Lukács BA, G-Tóth L, Várbíró G (2013). Which factors affect phytoplankton biomass in shallow eutrophic lakes? Hydrobiologia 714: 93-104.
  • Borics G, Tóthmérész B, Grigorszky I, Padisák J, Várbíró G, Szabó S (2003). Algal assemblage types of bog lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145-155.
  • Borics G, Tóthmérész B, Lukács BA, Várbíró G (2012). Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251-262.
  • Borics G, Várbíró G, Grigorszky I, Krasznai E, Szabó S, Kiss KT (2007). A new evaluation technique of potamoplankton for the assessment of the ecological status of rivers. Arch Hydrobiol Supplementband Large Rivers 17: 465-486.
  • Brookes JD, Ganf GG (2001). Variations in the buoyancy response of Microcystis aeruginosa to nitrogen, phosphorus and light. J Plankton Res 23: 1399-1411.
  • Carlson RE (1977). A trophic state index for lakes. Limnol Oceanogr 22: 361-369.
  • Çelik K, Sevindik TO (2015). The phytoplankton functional group concept provides a reliable basis for ecological status estimation in the Çaygören Reservoir (Turkey). Turk J Bot39: 588-598.
  • Cole GA (1994). Textbook of Limnology. Long Grove, IL, USA: Waveland Press Inc.Crossetti LO, Bicudo CEM (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610: 161-173.
  • Declerck S, Vanderstukken M, Pals A, Muylaert K, De Meester L (2007). Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199-2210.
  • Demir AN, Fakıoğlu Ö, Dural B (2014). Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turk J Bot38: 169-179.
  • Dokulil MT, Teubner K (2011). Eutrophication and climate change: present situation and future scenarios. In: Ansari AA, Sarvajeet SG, Lanza GR, Rast W, editors. Eutrophication: Causes, Consequences and Control. Berlin, Germany: Springer, pp. 1-16.
  • European Communities (EC) (2009). Water Framework Directive Intercalibration Technical Report. Part 2. Ispra, Italy: European Commission Joint Research Centre.
  • Havens KE, Nurnberg GK (2004). The phosphorus–chlorophyll relationship in lakes: potential influences of colour and mixing regime. Lake Reserv Manage 20: 188-196.
  • Jensen P, Jeppesen E, Olrik K, Kristensen P (1994). Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51: 1692-1699.
  • Jeppesen E, Jensen JP, Sondergaard M, Lauridsen T, Landkildehus F (2000). Trophic structure, species richness and biodiversity in Danish lakes. Changes along a phosphorus gradient. Freshwater Biol 45: 201-218.
  • Jeppesen E, Sondergaard M, Kanstrup E, Petersen B, Eriksen RB, Hammershoj M, Mortensen E, Jensen JP, Have A (1994). Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275: 15-30.
  • Krasznai E, Borics G, Várbíró G, Abonyi A, Padisák J, Deák C, Tóthmérész B (2010). Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639: 261-269.
  • Moss B, Hering D, Green AJ, Adoud A, Becares E, Beklioglu M, Boix D, Brucet S, Carvalho L, Clement B et al. (2009). Climate change and the future of freshwater biodiversity in Europe: a primer for policy-makers. Freshwater Rev 2: 103-130.
  • Murray J, Pullar L (1910). Bathymetrical Survey of the Fresh Water Lochs of Scotland, Vol. III. Edinburgh, UK: Challenger Office.
  • Naselli-Flores L (2000). Phytoplankton assemblages in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424: 1-11.
  • Padisák J, Crossetti LO, Naselli-Flores L (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1-19.
  • Padisák J, Grigorszky I, Borics G, Soróczki-Pintér E (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1-14.
  • Pasztaleniec A, Poniewozik M (2010). Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive–a comparison of approaches. Limnologica 40: 251-259.
  • Phillips G, Pietilainen OP, Carvalho L, Solimini A, Lyche Solheim A, Cardoso AC (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42: 213-226.
  • Pollingher U (1990). Effects of latitude on phytoplankton composition and abundance in large lakes. In: Tilzer MM, Serruya C, editors. Large Lakes. Berlin, Germany: Springer, pp. 368-402.
  • Reynolds CS (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status?. Hydrobiologia 369: 11-26.
  • Reynolds CS, Huszar VLM, Kruk C, Nasseli-Flores L, Melo S (2002). Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417-428.
  • Scheffer M (1998). Ecology of Shallow Lakes. London, UK: Chapman and Hall.Shannon CE, Weaver W (1963). The Mathematical Theory of Communication. Urbana, IL, USA: University of Illinois Press.
  • Strickland JDH, Parsons TR (1972). A Practical Handbook of Seawater Analysis. 2nd ed. Ottawa, Canada: Fisheries Research Board of Canada.Sun J, Liu D (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res 25: 1331-1346.
  • Tavşanoğlu ÜN, Brucet S, Levi EE, Bucak T, Bezirci G, Özen A, Johansson LS, Jeppesen E, Beklioğlu M (2015). Size-based diel migration of zooplankton in Mediterranean shallow lakes assessed from in situ experiments with artificial plants. Hydrobiologia 753: 47-59.
  • Technicon Industrial Methods (1977a). Nitrate and Nitrite in Water and Wastewater. No. 158-71. Luton, UK: Technicon.
  • Technicon Industrial Methods (1977b). Phosphate and Silicate Analysis in Water and Seawater. No. 253–280 E. Application Note. Luton, UK: Technicon.
  • Temel M, Yardımcı CH (2004). Phytoplankton community of Poyrazlar and Taşkısı Lakes, Adapazarı, Turkey. Bangladesh J Botany 33: 9-13.
  • Ter Braak CJF, Šmilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca, NY, USA: Microcomputer Power.
  • Topkara ET, Balık S (2010). Contribution to the knowledge on distribution of the aquatic beetles (ordo: Coleoptera) in the western Black Sea Region and its environs of Turkey. Turk J Fish Aquat Sci 10: 323-332.
  • Utermöhl H (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilung Internationale Vereinigung fuer Theoretische und Amgewandte Limnologie9: 1-38 (in German).
  • Vollenweider RA, Kerekes J (1982). Eutrophication of Waters. Monitoring, Assessment and Control. Paris, France: Organization for Economic Co-operation and Development (OECD).
  • Wetzel RG, Likens G (2000). Limnological Analysis. New York, NY, USA: Springer.
  • Youngman RE (1978). The Measurement of Chlorophyll. Medmenham, UK: Water Research Centre.