Phytolith analysis of Poa pratensis (Poaceae) leaves

Phytoliths in Poa pratensis L. (Poaceae) leaf blades and sheaths are described in this study. The role of plant opal particles-known as phytoliths-is considerable in taxonomical studies, and their long-term preservation in sediments makes them a useful tool in the reconstruction of ancient plant communities and plant-human interactions. All together, 2244 phytoliths were counted and analyzed in 25 plant samples (5 shoots of 5 specimens and approximately 500-600 phytoliths per specimen). The biogenic silica content of P. pratensis leaves was determined at 2.61%, and 27 morphotypes have been described using the International Code for Phytolith Nomenclature. Two morphotypes are described for the first time in this study. Long cells (elongate psilate and sinuate morphotypes) and short cells (rondel-trapeziform elongated and rounded morphotypes) are frequently present in this species. Differences in morphotype frequency and significant differences in a few simple morphometric data (length, width, height) of long cells and short cells were found among specimens, which suggests that these features vary depending on environmental factors and the maturity of leaf tissues.

Phytolith analysis of Poa pratensis (Poaceae) leaves

Phytoliths in Poa pratensis L. (Poaceae) leaf blades and sheaths are described in this study. The role of plant opal particles-known as phytoliths-is considerable in taxonomical studies, and their long-term preservation in sediments makes them a useful tool in the reconstruction of ancient plant communities and plant-human interactions. All together, 2244 phytoliths were counted and analyzed in 25 plant samples (5 shoots of 5 specimens and approximately 500-600 phytoliths per specimen). The biogenic silica content of P. pratensis leaves was determined at 2.61%, and 27 morphotypes have been described using the International Code for Phytolith Nomenclature. Two morphotypes are described for the first time in this study. Long cells (elongate psilate and sinuate morphotypes) and short cells (rondel-trapeziform elongated and rounded morphotypes) are frequently present in this species. Differences in morphotype frequency and significant differences in a few simple morphometric data (length, width, height) of long cells and short cells were found among specimens, which suggests that these features vary depending on environmental factors and the maturity of leaf tissues.

___

  • Abernethy GA, Fountain DW, McManus MT (1998). Observations on the leaf anatomy of Festuca novae-zelandiae and biochemical responses to a water deficit. New Zeal J Bot 36: 113–123.
  • Abramoff MD, Magalhaes PJ, Ram SJ (2004). Image processing with ImageJ. Biophot Int 11: 36–42.
  • Agarie S, Agata W, Uchida H, Kubota F, Kaufman P (1996). Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. J Exp Bot 47: 655–660.
  • Albert RM, Esteve X, Portillo M, Rodriguez-Cintas A, Cabanes D, Esteban I, Hernandez F (2011). Phytolith CoRe, phytolith reference collection. Website: http://www.gepeg.org/enter_ PCORE.html [accessed 20 July 2012]
  • Albert RM, Weiner S (2001). Study of opal phytoliths in prehistoric ash layers using a quantitative approach. In: Meunier J, Coline F, editors. Phytoliths: Applications in Earth Sciences and Human History. Lisse, Netherlands: Balkema, pp. 251–266.
  • Barboni D, Bremond L, Bonnefille R (2007). Comparative study of modern phytolith assemblages from inter-tropical Africa. Palgeog Palclim Palecol 246: 454–470.
  • Barczi A, Tóth TM, Csanádi A, Sümegi P, Czinkota I (2006). Reconstruction of the paleo-environment and soil evolution of the Csípő-halom kurgan, Hungary. Quat Int 156: 49–59.
  • Barczi A, Golyeva AA, Pető Á (2009). Palaeoenvironmental reconstruction of Hungarian kurgans on the basis of the examination of palaeosoils and phytolith analysis. Quatern Int 193: 49–60.
  • Blackman E, Parry DW (1968). Opaline silica bodies in the range grasses of southern Alberta. Can J Bot 49: 769–781.
  • Blinnikov M, Busacca A, Whitlock C (2002). Reconstruction of the late Pleistocene grassland of the Columbia Basin, Washington, USA, based on phytolith records in loess. Palgeog Palclim Palecol 177: 77–101.
  • Blinnikov MS (2005). Phytoliths in plants and soils of the interior Pacific Northwest, USA. Rev Palaeobot Palyno 135: 71–98.
  • Blinnikov MS, Bagent CM, Reyerson PE (2013). Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quatern Int 287: 101–113.
  • Blinnikov MS, Gaglioti BV, Walker DA, Wooller MJ, Zazula GD (2011). Pleistocene graminoid-dominated ecosystems in the Arctic. Quatern Sci Rev 30: 2906–2929.
  • Borhidi A (2003). Magyarország növénytársulásai. Budapest, Hungary: Akadémiai Kiadó (in Hungarian).
  • Boyd M (2005). Phytoliths as paleoenvironmental indicators in a dune field on the northern Great Plains. J Arid Environ 61: 357–375.
  • Brown DA (1984a). Prospects and limits of a phytolith key for grasses in the Central United States. J Archaeol Sci 11: 221–243.
  • Brown DA (1984b). Prospects and limits of a phytolith key for grasses in the Central United States. J Archaeol Sci 11: 345–368.
  • Carnelli AL, Theurillat J-P, Madella M (2004). Phytolith types and type-frequencies in subalpine–alpine plant species of the European Alps. Rev Palaeobot Palyno 129: 39–65.
  • Clayton WD, Renvoize SA (1986). Genera Graminum: Grasses of the World. Kew Bull. Additional Series XIII. London, UK: Royal Botanic Gardens.
  • De Melo SP, Monteiro FA, De Bona FD (2010). Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha. Plant and Soil 336: 241–249.
  • Goldblatt P, Henrich JE, Rudall P (1984). Occurrence of crystals in Iridaceae and allied families and their phylogenetic significance. Ann Missouri Bot Gard 71: 1013–1020.
  • Hartley W (1961). Studies on the origin, evolution, and distribution of the Gramineae. IV. The genus Poa L. Aust J Bot 9: 152–161.
  • Hodson MG, Sangster AG, Parry DW (1985). An ultrastructural study on the developmental phases and silification of the glumes of Phalaris canariensis L. Ann Bot-London 55: 649– 665.
  • Hodson MJ, Williams SE, Sangster AG (1997). Silica deposition in the needles of the Gymnosperms. I. Chemical analysis and light microscopy. In: Pinilla A, Juan-Tresserras J, Machado MJ, editors. The state-of-the-art of phytoliths in soils and plants. Centro de Ciencas Medioambientales. CSIC Monograf 4: 135– 146.
  • Honaine MF, Osterrieth ML (2012). Silification of the adaxial epidermis of leaves of panicoid grass in relation to leaf position and section and environmental conditions. Plant Biol 14: 596– 604.
  • Jafari S, Saeidnia S, Reza M, Ardekani S, Hadjiakhoondi A, Khanavi M (2013). Micromorphological and preliminary phytochemical studies of Azadirachta indica and Melia azedarach. Turk J Bot 37: 690–697.
  • Juggins S (2007). C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological data Analysis and Visualisation. Newcastle upon Tyne, UK: Newcastle University.
  • Lindstrom LI, Boo BM, Mujica MB, Lutz EE (2000). Silica bodies in perennial grasses of the southern District of the Calden in central Argentina. Phyton Int J Exp Bot 69: 127–135.
  • Lisztes-Szabó Zs, Kovács Sz, Barna Cs (2013). Pázsitfű mellékhajtások fitolitkészletének egyedi varianciája a Poa pratensis L. (Poaceae) példáján. Bot Közl 100: 155–175 (in Hungarian).
  • Madella M, Alexandre A, Ball T (2005). International Code for Phytolith Nomenclature 1.0. Ann Bot-London 96: 253–260.
  • Madella M, Lancelotti C, Osterrieth M, editors (2012). Comprehensive perspectives on phytolith studies in Quaternary research. Quatern Int 287: 180.
  • Mejia-Saules T, Bisby FA (2003). Silica bodies and hooked papillae in lemmas of Melica species (Gramineae: Pooideae). Bot J Linn Soc 141: 447–463.
  • Mercader J, Astudillo F, Barkworth M, Bennett T, Esselmont C, Kinyanjui R, Grossman DL, Simpson S, Walde D (2010). Poaceae phytoliths from Niassa Rift, Mozambique. J Archaeol Sci 37: 1953–1967.
  • Mercader J, Bennett T, Esselmont C, Simpson S, Walde D (2009). Phytoliths in woody plants from the Miombo woodlands of Mozambique. Ann Bot-London 104: 91–113.
  • Metcalfe CR (1960). Anatomy of the Monocotyledons I. Gramineae. Oxford, UK: Clarendon Press.
  • Monsen SB, Stevens R, Shaw NL (2004). Restoring Western Ranges and Wildlands. USDA Forest Service, Rocky Mountain Research Station. General Technical Report. RMRS GTR 136: 295–698.
  • Morris LR, Baker FA, Morris C, Ryel RJ (2009). Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon–juniper woodlands of the Great Basin, USA. Rev Palaeobot Palyno 157: 339–357.
  • Mostafavi G, Assadi M, Nejadsattari T, Sharifnia F, Mehregan I (2013). Seed micromorphological survey of the Minuartia species (Caryophyllaceae) in Iran. Turk J Bot 37: 446–454.
  • Mulholland SC (1989). Phytolith shape frequencies in North Dakota Grasses: a comparison to general patterns. J Archaeol Sci 16: 489–511.
  • Mulholland SC, Rapp G, Ollendorf AL (1988). Variation in phytoliths from corn leaves. Can J Bot 66: 2001–2008.
  • Mulholland SC, Rapp G, Ollendorf AL, Regal R (1990). Variation in phytoliths within a population of corn (Mandan Yellow Flour). Can J Bot 68: 1638–1645.
  • Nassar MAA, Ramadan HRH, Ibrahim HMS (2013). Anatomical structures of vegetative and reproductive organs of Senna occidentalis (Caesalpiniaceae). Turk J Bot 37: 542–552.
  • Nawazish S, Hameed M, Naurin S (2006). Leaf anatomical adaptations of Cenchrus ciliaris L. from the Salt Range, Pakistan against drought stress. Pak J Bot 38: 1723–1730.
  • Peleg Z, Saranga Y, Fahima T, Aharoni A, Elbaum R (2010). Genetic control over silica deposition in wheat awns. Physiol Plant 140: 10–20.
  • Piperno DR, Pearsall DM (1998). The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contributions to Botany, Number 85. Washington, USA: Smithsonian Institution Press.
  • Ponzi R, Pizzolongo P (2003). Morphology and distribution of epidermal phytoliths in Triticum aestivum L. Plant Biosyst 137: 3–10.
  • Portillo M, Ball T, Manwaring J (2006). Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa Schreb. Econ Bot 60: 121–129.
  • Premathilake R (2006). Relationship of environmental changes in central Sri Lanka to possible prehistoric land-use and climate changes. Palgeog Palclim Palecol 240: 468–496.
  • Prychid CJ, Rudall PJ, Gregory M (2004). Systematics and biology of silica bodies in Monocotyledons. Bot Rev 69: 377–440.
  • Rovner I, Russ JC (1992). Darwin and design in phytolith systematics: morphometric methods for mitigating redundancy. In: Mulholland SC, Rapp GR, editors. Phytolith Systematics: Emerging Issues. New York, NY, USA: Plenum Press.
  • Rudall PJ (1994). Anatomy and systematic of Iridaceae. Bot J Linn Soc 114: 1–21.
  • Sangster AG, Williams SE, Hodson MJ (1997). Silica deposition in the needles of the Gymnosperms. II Scanning electron microscopy and X-ray microanalysis. In: Pinilla A, Juan-Tresserras J, Machado MJ, editors. The State-of-the-Art of Phytoliths in Soils and Plants. Centro de Ciencas Medioambientales. CSIC Monograf 4: 135–146.
  • Soó R (1973). A Magyar flóra és vegetáció rendszertani— növényföldrajzi kézikönyve V. Budapest, Hungary: Akadémiai Kiadó, pp. 313–316 (in Hungarian).
  • Strömberg CAE, Werdelin L, Friis EM, Saraç G (2007). The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palgeog Palclim Palecol 250: 18–49.
  • Szabo KZs, Papp M, Daroczi L (2006). Ligule morphology and anatomy of five Poa species. Acta Biol Crac 48: 83–88.
  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1980). Flora Europaea. volume 5. Cambridge, UK: Cambridge University Press, pp. 159–162.
  • Twiss PC, Suess CE, Smith RM (1969). Morphological classification of grass phytoliths. Soil Sci Soc Am Proc 33: 109–115.
  • Wilding LP, Smeck NE, Drees LR (1977). Silica in soils: quartz, cristobalite, tridymite and opal. In: Dixon JB, Weed SB, editors. Minerals in Soil Environments. Madison, WI, USA: Soil Sci Soc Am Proc, pp. 471–552.
  • Yost CL, Blinnikov MS (2011). Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for archaeobotany and paleoecological reconstructions. J Archaeol Sci 38: 1977–1991.
  • Zucol AF, Brea M, Scopel A (2005). First record of fossil wood and phytolith assemblages of the Late Pleistocene in El Palmar National Park (Argentina). J South Am Earth Sci 20: 33–43.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A taxonomic revision of the genus Cephalaria (Caprifoliaceae) in Turkey

Ramazan Süleyman GÖKTÜRK, Hüseyin SÜMBÜL

Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic efects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves

Muhammad Mansoor JAVAID, Muhammad Anjum AQEEL, Francisco GARCIA SANCHEZ, Muhammad Adnan SHAHID, Rashad Mukhtar BALAL, Muhammad Aslam PERVEZ, Tahira ABBAS

Molecular variability of plantain ecotypes from the genus Musa (Musaceae)

Rakeshkumar CHOUDHARY, Raghunath KESHAVACHANDRAN, Rema MENON

Allium efeae (Amaryllidaceae), a new species from northwest Anatolia, Turkey

İlker GENÇ, Fatma Neriman ÖZHATAY

Ellenberg’s indicator values for soil nitrogen concentration and pH in selected swamp forests in the Central Black Sea region of Turkey

Burak SÜRMEN, Hamdi Güray KUTBAY, Dudu Duygu KILIÇ, Rena HÜSEYİNOVA, Mahmut KILINÇ

Macromycetes determined in Yomra (Trabzon) district

İlgaz AKATA, Yasin UZUN, Abdullah KAYA

Phytolith analysis of Poa pratensis (Poaceae) leaves

Zsuzsa LISZTES-SZABÓ, Szilvia KOVÁCS, Ákos PETÖ

Morphology of the seed coat of Oxalis spp. from Buenos Aires Province (Argentina)

Sonia ROSENFELDT, Beatriz Gloria GALATI

Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defense system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions

Shagufta PERVEEN, Muhammad SHAHBAZ, Muhammad ASHRAF

Flower closure in the feld bindweed ( Convolvulus arvensis): a feld test of the pollination hypothesis

Pavol PROKOP, Dominika NEUPAUEROVA