Isolation and expression analysis of three different flowering genes(TtLFY, TtAP1, and TtAP2) from an unusual legume species, Thermopsis turcica

Isolation and expression analysis of three different flowering genes(TtLFY, TtAP1, and TtAP2) from an unusual legume species, Thermopsis turcica

LEAFY (LFY), APETALA1 (AP1), and APETALA2 (AP2) genes encode three different transcription factors that control and regulate flower initiation and development in Arabidopsis. By using 3 - and 5 -RACE analysis, we isolated and sequentially characterized TtLFY (a LEAFY-like gene), TtAP1 (a MADS-box like gene), and TtAP2 (an AP2/ERBF-like gene) in Thermopsis turcica, an unusual endemic legume species with three free carpellated flower structure. Semiquantitative RT-PCR analysis for 18 different vegetative and reproductive tissues of T. turcica indicated TtLFY transcripts mainly in the shoot tips and young floral buds and TtAP1 transcripts in the sepals and petals; however, TtAP2 transcripts were detected in all tissues. This is the first record for a LFY-like gene, TtLFY, expressed in the shoot tips of an underground plant section and for an AP2-like gene transcript found in all tissues, similar to a housekeeping gene.

___

  • Aukerman MJ, Sakai H (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell Online 15: 2730-2741.
  • Ballerini ES, Kramer EM (2011). Environmental and molecular analysis of the floral transition in the lower eudicot Aquilegia formosa. EvoDevo 2: 1-20.
  • Benlloch R, d’Erfurth I, Ferrandiz C, Cosson V, Beltrán JP, Cañas LA, Ratet P (2006). Isolation of mtpim proves Tnt 1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiol 142: 972-983.
  • Berbel A, Navarro C, Ferrándiz C, Cañas LA, Madueño F, Beltrán JP (2001). Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1‐like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25: 441-451.
  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721-743.
  • Carpenter R, Coen ES (1990). Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Gene Dev 4: 1483-1493.
  • Chi Y, Huang F, Liu H, Yang S, Yu D (2011). An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. J Plant Physiol 168: 2251-2259.
  • Coen ES, Romero J, Doyle S, Elliott R, Murphy G, Carpenter R (1990). floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.
  • Davis PH (1965). Flora of Turkey and the East Aegean Islands (Vol. 1). Edinburgh, UK: Edinburgh University Press, pp. 95-206.
  • Doyle JJ, Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
  • Ferrándiz C, Navarro C, Gomez MD, Canas LA, Beltran JP (1999). Flower development in Pisum sativum: from the war of the whorls to the battle of the common primordia. Dev Genet 25: 280-290.
  • Ge J, Zhao D, Han C, Wang J, Hao Z, Tao J (2014). Cloning and expression of floral organ development-related genes in herbaceous peony (Paeonia lactiflora Pall.). Mol Biol Rep 41: 6493-6503.
  • Gil-Humanes J, Pistón F, Martín A, Barro F (2009). Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley-wheat amphiploids. BMC Plant Biol 9: 66.
  • Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel JL, Benlloch R, Parcy F, Müller CW (2008). Structural basis for LEAFY floral switch function and similarity with helix turn-helix proteins. EMBO J 27: 2628-2637.
  • Irish VF, Sussex IM (1990). Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2: 741-753.
  • Jinghua D, Fangdong L, Hongyan D, Lin Z, Deyi Y, Yanzhi F, Lvyi M (2014). Cloning and expression analysis of a LFY homologous gene in Chinese jujube (Ziziphus jujube Mill.). African J Biotech 11: 581-589.
  • Jofuku KD, Den Boer BG, Van Montagu M, Okamuro JK (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell Online 6: 1211-1225.
  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Riechmann JL (2010). Orchestration of floral initiation by APETALA1. Science 328: 85-89.
  • Kotoda N, Wada M, Komori S, Kidou SI, Abe K, Masuda T, Soejima J (2000). Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Amer Soc Hort Sci 125: 398-403.
  • Litt A, Irish VF (2003). Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821-833.
  • Liu C, Xi W, Shen L, Tan C, Yu H (2009). Regulation of floral patterning by flowering time genes. Develop Cell 16: 711-722.
  • Liu T, Hu YG, Li XX (2011). Characterization of a chestnut FLORICAULA/LEAFY homologous gene. Afr J Biotechnol 10: 3978-3985.
  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105: 793-803.
  • Luo H, Chen S, Jiang J, Chen Y, Chen F, Teng N, Huang C (2011). The expression of floral organ identity genes in contrasting water lily cultivars. Plant Cell Rep 30: 1909-1918.
  • Mandel MA, Yanofsky MF (1995). A gene triggering flower formation in Arabidopsis. Nature 377: 522-524.
  • Meng Q, Zhang C, Huang F, Gai J, Yu D (2007). Molecular cloning and characterization of a LEAFY-like gene highly expressed in developing soybean seeds. Seed Sci Res 17: 297-302.
  • Ng M, Yanofsky MF (2001). Activation of the Arabidopsis B class homeotic genes by APETALA1. The Plant Cell Online 13: 739-753.
  • Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A (2013). Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. Front Plant Sci 4: 358.
  • Pelaz S, Gustafson‐Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001). APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26: 385-394.
  • Pillitteri LJ, Lovatt CJ, Walling LL (2004). Isolation and characterization of a TERMINALFLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135: 1540-1551.
  • Ripoll JJ, Roeder AH, Ditta GS, Yanofsky MF (2011). A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Develop 138: 5167-5176.
  • Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning, Vol. 1, No. 7.58. New York, NY, USA: Cold Spring Harbor Laboratory Press.
  • Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Higgins DG (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Mol Systems Biol 7: 539.
  • Song J, Clemens J, Jameson PE (2008). Quantitative expression analysis of the ABC genes in Sophora tetraptera, a woody legume with an unusual sequence of floral organ development. J Exp Bot 59: 247-259.
  • Strommer J, Gregerson R, Vayda M, Glick BR, Thompson JE (1993). Isolation and characterization of plant mRNA. In: Glick BR, Thompson JE, editors. Methods in Plant Molecular Biology and Biotechnology. Boca Raton, FL, USA: CRC, pp. 49-65.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725-2729.
  • Tan K, Vural M, Kucukoduk M (1983). An unusual new Thermopsisfrom Turkey. Notes Roy Bot Gard Edinburgh 40: 515-518.
  • Tanaka Y, Yamamura T, Terakawa T (2011). Identification and expression analysis of the Cyclamen persicum MADS-box gene family. Plant Biotechnol 28: 167-172.
  • Theißen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000). A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149.
  • Theißen G, Saedler H (2001). Plant biology: floral quartets. Nature 409: 469-471.
  • Tsaftaris AS, Pasentsis K, Iliopoulos I, Polidoros AN (2004). Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci 166: 1235-1243.
  • Tsaftaris AS, Pasentsis K, Madesis P, Argiriou A (2012). Sequence characterization and expression analysis of three APETALA2-like genes from saffron crocus. Plant Mol Biol Rep 30: 443-452.
  • Tucker SC (1989). Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae). Amer J Bot 714-729.
  • Tucker SC (2003). Floral development in legumes. Plant Physiol 131: 911-926. Vahala T, Oxelman B, von Arnold S (2001). Two APETALA2-like genes of Picea abies are differentially expressed during development. J Exp Bot 52: 1111-1115.
  • Wang ZJ, Huang JQ, Huang YJ, Chen FF, Zheng BS (2012). Cloning and characterization of a homologue of the FLORICAULA/LEAFY gene in hickory (Carya cathayensis Sarg). Plant Mol Biol Rep 30: 794-805.
  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
  • Wojciechowski MF (2003). Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective In: Klitgaard BB, Bruneau A, editors. Advances in Legume Systematics, Part 10, Higher Level Systematics. Kew, UK: Royal Botanic Gardens, pp. 5-35.
  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
  • Zhang JX, Wu KL, Zeng SJ, Duan J, Tian LN (2010). Characterization and expression analysis of PhalLFY, a homologue in Phalaenopsis of FLORICAULA/LEAFY genes. Sci Hort 124: 482-489.