Phylogenetic relationships among native Oxytropis species in Turkey using the trnL intron, trnL-F IGS, and trnV intron cpDNA regions

Phylogenetic relationships among native Oxytropis species in Turkey using the trnL intron, trnL-F IGS, and trnV intron cpDNA regions

We tested the phylogenetic utility of three chloroplast DNA loci, i.e. the trnL(UAA) intron, trnL(UAA)-F(GAA) intergenic spacer (IGS), and trnV(UAC) intron, across thirteen native Oxytropis species. Our objective was to determine whether any of these chloroplast DNA markers could be beneficial to figure out phylogenetic relationships among Oxytropis species. To increase the interspecific sampling, nine sequences of the trnL intron and trnL-F regions were retrieved from GenBank and included in the analyses. No sequence of the trnV intron region was available in the database and so only sequences of the native species were used for the analyses. Phylogenies derived from maximum likelihood and maximum parsimony analyses indicated that the trnL intron and trnV intron regions provided better resolution for relationships among species with respect to the trnL-F region. The highest variable and parsimony informative sites were observed in the trnL intron region, while the lowest sites were seen in the trnV intron. Less variable sites for the trnV intron region were expected since no foreign sequences could be included in the analysis. Oxytropis lazica was phylogenetically separated from native species and clustered with foreign ones when the trnL intron and trnL-F regions were analyzed. The result obtained from the trnV intron region proved that Oxytropis engizekensis Duman and Vural may be a synonym of O. persica Boiss. A previous study that used morphological characters arrived at a similar conclusion.

___

  • Archambault A, Stromvik MV (2012). Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic. Botany 90: 770-779.
  • Artyukova EV, Kozyrenko MM (2012). Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome. RussJGenet 48: 163-169.
  • Artyukova EV, Kozyrenko MM, Kholina AB, Zhuravlev YN (2011). High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events. Genetica 139: 221-232.
  • Bakker FT, Culham A, Daugherty LD, Gibby M (1999). A trnL-F based phylogeny for species of Pelargonium Geraniaceae with small chromosomes. Plant Syst Evol 216: 309-324.
  • Ceter T, Karaman Erkul S, Aytac Z, Baser B (2013). Pollen morphology ofgenus Oxytropis DC. (Fabaceae) in Turkey. Bangladesh J Botany 42: 167-174.
  • Chamberlain DF, Mathews MA (1970). Oxytropis DC. In: Davis PH editor. Flora of Turkey and the East Aegean Islands Vol. 3. Edinburgh, UK: Edinburgh University Press, pp. 254.
  • Chen SY, Xia T, Wang YJ, Liu JQ, Chen SL (2005). Molecular systematics and biogeography of Crawfurdia, Metagentianaand Tripterospermum (Gentianaceae) based on nuclear ribosomal and plastid DNA sequences. Ann Bot 96: 413-424.
  • Dickoré WB, Kriechbaum M (2006). Oxytropis iridum(Leguminosae), a new species from SE Tibet (Xizang, China), including phytogeographical notes. Willdenowia 36: 857-865.
  • Dizkirici A, Cetiner C, Onde S, Birsin M, Kaya Z, Ozgen M (2013). Phylogenetic relationships of Tr iti c um and Aegilops genera based on DNA sequences of trnT-F chloroplast DNA non-coding region. Genet Resour Crop Ev 60: 2227-2240.
  • Dızkırıcı Tekpınar A, Karaman Erkul S, Aytaç Z, Kaya Z (2016). Phylogenetic relationships between Oxytropis DC. and Astragalus L. species native to an Old World diversity center inferred from nuclear ribosomal ITS and plastid matK gene sequences. Turk J Biol 40: 250-263.
  • Doyle JJ, Doyle JL (1987). A rapid DNA procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.
  • Doyle JJ, Doyle JL, Rauscher JT, Brown AHD (2004). Diploid and polyploid reticulate evolution throughout the history of the perennial soybeans (Glycine subgenus Glycine). New Phytol 161: 121-132.
  • Erkul SK, Celep F, Aytac Z (2014). Seed morphology and its systematic implications for genus Oxytropis DC. (Fabaceae). Plant Biosyst 149: 875-883.
  • Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
  • Gao J, Lu P, Wang JN, Jin F (2009). Molecular phylogeny of several species of Oxytropis DC. based on 5.8S rDNA/ITS sequence. Acta Agric Bor Sin 6: 168-173.
  • Gielly L, Taberlet P (1994). The use of chloroplast DNA to resolve phylogenies: non-coding versus rbcL sequences. Mol Biol Evol 11: 769-777.
  • Gielly L, Yuan YM, Küpfer P, Taberlet P (1996). Phylogenetic use of noncoding regions in the genus Gentiana L.: chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences. Mol Phylogenet Evol 5: 460-466.
  • Hoggard GD, Kores PJ, Molvray M, Hoggard RK (2004). The phylogeny of Gaura (Onagraceae) based on ITS, ETS, and trnL-F sequence data. Am J Bot 91: 139-148.
  • Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008). Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48: 1204-1217.
  • Jorgensen J, Stehlik I, Brochmann C, Conti E (2003). Implications of ITS sequences and RAPD markers for the taxonomic and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) Complexes in Alaska.Am J Bot 90: 1470-1480.
  • Karaman S, Suludere Z, Pınar M, Aytac Z (2009). The leaflets micromorphology of the genus Oxytropis DC. (Leguminosae) in Turkey by SEM. Botany Res J 2: 7-23.
  • Karaman Erkul S, Aytaç Z (2013). The revision of the genus OxytropisDC. (Leguminosae) in Turkey. Turk J Bot 37: 24-38.
  • Kazempour Osaloo S, Kazemi Nooreini M, Maassoumi AA, Pouyani ER (2006). Phylogenetic status of Oreophysa microphylla(Fabaceae-Galegeae) based on nrDNA (ITS region) and cpDNA (trnL intron/trnL-trnF intergenic spacer) sequences. Rostaniha 7: 177-188.
  • Kholina AB, Kholin SK (2008). Intraspecific variation of Oxytropis chankaensis, a far eastern endemic. Russ J Ecol 39: 14-20.
  • Kores PJ, Molvray M, Weston PH, Hopper SD, Brown AP, Cameron KM, Chase MW (2001). A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data. Am J Bot 88: 1903-1914.
  • Learn GH, Shore JS, Furnier GR, Zurawski G, Clegg MT (1992). Constraints on the evolution of plastid introns: the group II intron in the gene encoding tRNA-Val(UAC). Mol Biol Evol 9: 856-871.
  • Magee AM, Aspinall S, Rice DW, Cusack BP, Semon M, Perry AS, Stefanovic S, Milbourne D, Barth S, Palmer JD et al. (2010). Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res20: 1700-1710.
  • Malyshev LI (2008). Phenetics of the subgenera and sections in the genus Oxytropis DC. (Fabaceae) bearing on ecology and phylogeny. Contemp ProblEcol 1: 440-444.
  • Ozhatay N (2000). Oxytropis DC. In: Guner A, Ozhatay N, Ekim T, Baser KHC, editors. Flora of Turkey and the East Aegean Islands (suppl. 2), Vol. 11. Edinburgh, UK: Edinburgh University Press, pp. 88.
  • Sabir J, Schwarz E, Ellison N, Zhang J, Baeshen NA, Mutwakil M, Jansen R, Ruhlman T (2014). Evolutionary and biotechnology implications of plastid genome variation in the inverted-repeat-lacking clade of legumes. Plant Biotechnol J 12: 743-754.
  • Saha PS, Ray S, Sengupta M, Jha S (2014). Molecular phylogenetic studies based on rDNA ITS, cpDNA trnL intron sequence and cladode characteristics in nine Protasparagus taxa. Protoplasma 252: 1121-1134.
  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17: 1105-1109.
  • Tamura K, Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512-526.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28: 2731-2739.
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997). The Clustal-X windows interface-flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.
  • Wang XR, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999). Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and tnV intron sequences.Am J Bot 86: 1742-1753.
  • Welsh SL (2001) Revision of North American species of Oxytropis de Candolle (Leguminosae). E.P.S., Inc. Orem, Utah.
  • Wojciechowski MF, Sanderson MJ, Hu JM (1999). Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNAITS and chloroplast DNAtrnL intron data. Syst Bot 24: 409-437.
  • Zhang X, Marchant A, Wilson KL, Bruhl JJ (2004). Phylogenetic relationships of Carpha and its relatives (Schoeneae, Cyperaceae) inferred from chloroplast trnL intron and trnL–trnF intergenic spacer sequences. Mol Phylogenet Evol 31: 647-657.
Turkish Journal of Botany-Cover
  • ISSN: 1300-008X
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK