Iron toxicity-induced DNA damage, DNA methylation changes, and LTR retrotransposon polymorphisms in Zea mays

Iron toxicity-induced DNA damage, DNA methylation changes, and LTR retrotransposon polymorphisms in Zea mays

The impact of Fe2+ (iron)toxicity on genomic instability, DNA methylation status, and Long Terminal Repeat Retrotransposons (LTR RTs) polymorphisms on Zea mays is unknown. We investigated the toxicity of Fe2+ using Random Amplified Polymorphic DNA (RAPD), Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) and Inter Retrotransposon Amplified Polymorphism (IRAP) assays in Zea mays seedlings, respectively. The results indicated that each dose of FeSO4 (50, 100, 200, and 300 mg/L) had a reducing effect on Genomic Template Stability (GTS) and increasing in RAPD pattern changes (DNA damage). The value of DNA methylation rised gradually depending on FeSO4 doses. Moreover, five LTR RTs (Wltr2105, Nikita-N57, Sukkula, Nikita-E2647, and Stowaway) of the maize genome revealed polymorphism in all FeSO4 doses. Furthermore, the present study indicated that there is a relationship between DNA methylation alterations and LTR RTs mobilization. It was concluded that iron caused DNA methylation changes as well as genotoxic damage in the maize genome. Also, considering the increase in some LTR RTs polymorphism we can say that it may be a part of the defense mechanism of the plant during stress.

___

  • Aras S, Beyaztas T, Duman DC, Gunduzer EG (2011). Evaluation of genotoxicity of Pseudevernia furfuracea (L) Zopf by RAPD analysis. Genetics and Molecular Research 10 (4): 3760-3770. doi:10.4238/2011.december.15.4
  • Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF (2020). Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. International Journal of Molecular Sciences 21 (20): 7457. doi:10.3390/ijms21207457
  • Aydin M, Arslan E, Yigider E, Taspinar MS, Agar G (2021). Protection of Phaseolus vulgaris L from herbicide 2,4-D results from exposing seeds to humic acid. Arabian Journal for Science and Engineering 46 (1): 163-173. doi:10.1007/s13369-020-04893-w
  • Ben Amor B, Wirth S, Merchan F, Laporte P et al. (2009). Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Research 19 (1): 57-69. doi:10.1101/gr.080275.108
  • Boyko A, Kovalchuk I (2008). Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis 49 (1): 61-72. doi:10.1002/em.20347
  • Cheng C, Daigen M, Hirochika H (2006). Epigenetic regulation of the rice retrotransposon Tos17. Molecular Genetics and Genomics 276 (4): 378-390. doi:10.1007/s00438-006-0141-9
  • Deka J, Sarma HP (2012). Heavy metal contamination in soil in an industrial zone and its relation with some soil properties. Archives of Applied Science Research 4 (2): 831-836.
  • Doganlar ZB, Doganlar O, Tabakcioglu K (2014). Genotoxic effects of heavy metal mixture in Drosophila melanogaster: expressions of heat shock proteins, RAPD profiles and mitochondrial DNA sequence. Water, Air, & Soil Pollution 225 (9): 1-14. doi:10.1007/s11270-014-2104-9
  • Duman DC, Altunkaynak E, Aras ES (2014). Heavy metal accumulation and genotoxicity indicator capacity of the lichen species Ramalina pollinaria collected from around an iron steel factory in Karabük, Turkey. Turkish Journal of Botany 38: 477- 490. doi:10.3906/bot-1201-19
  • Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R et al.(2013). Epigenetic and genetic influences on DNA methylation variation in maize populations. The Plant Cell 25 (8): 2783- 2797. doi:10.1105/tpc.113.114793
  • Fageria NK, Santos AB, Barbosa Filho MP, Guimar˜aes CM (2008). Iron toxicity in lowland rice. Journal of Plant Nutrition 31 (9): 1676-1697. doi:10.1080/01904160802244902
  • Galaris D, Barbouti A, Pantopoulos K (2019). Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1866 (12): 118535. doi:10.1016/j.bbamcr.2019.118535
  • Galindo-González L, Sarmiento F, Quimbaya MA (2018). Shaping plant adaptability, genome structure and gene expression through transposable element epigenetic control: focus on methylation. Agronomy 8 (9): 180. doi:10.3390/ agronomy8090180
  • Gallo-Franco JJ, Sosa CC, Ghneim-Herrera T, Quimbaya M (2020). Epigenetic control of plant response to heavy metal stress: a new view on aluminum tolerance. Frontiers in Plant Science 11: 602625. doi:10.3389/fpls.2020.602625
  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A et al (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology 16 (3): 1807-1828. doi:10.1007/s13762-019-02215-8
  • Hobert O (2008). Gene regulation by transcription factors and microRNAs. Science 319 (5871) : 1785-1786. doi:10.1126/ science.1151651
  • Hosseinpour A, Haliloglu K, Cinisli KT, Ozkan G, Ozturk HI et al. (2020). Application of zinc oxide nanoparticles and plant growth promoting bacteria reduces genetic impairment under salt stress in tomato (Solanum lycopersicum L‘Linda’). Agriculture 10 (11): 521. doi:10.3390/agriculture10110521
  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I et al.(2011). An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472 (7341): 115-119. doi:10.1038/nature09861
  • Jones-Rhoades MW, Bartel DP, Bartel B (2006). MicroRNAs and their regulatory roles in plants. Annual Review and Plant Biology 57 (1): 19-53. doi:10.1146/annurev.arplant.57.032905.105218
  • Krohling CA, Eutrópio FJ, Bertolazi AA, Dobbss LB, Campostrini E et al.(2016). Ecophysiology of iron homeostasis in plants. Soil Science and Plant Nutrition 62 (1): 39-47. doi:10.1080/003807 68.2015.1123116
  • Kumar S (2019). Epigenetics and epigenomics for crop improvement: current opinion. Advances in Biotechnology and Microbiology 14 (1): 555879. doi:10.19080/AIBM.2019.14.555879
  • Lee SR, Oh MM, Park S (2016). Ferric-chelate reductase activity is a limiting factor in iron uptake in spinach and kale roots. Horticulture, Environment, and Biotechnology 57 (5): 462- 469. doi:10.1007/s13580-016-0201-y
  • Lippman Z, Martienssen R (2004). The role of RNA interference in heterochromatic silencing. Nature 431 (7006): 364-370. doi:10.1038/nature02875
  • McClintock B (1984). The significance of responses of the genome to challenge. Science 226 (4676): 792-801. doi:10.1126/ science.15739260
  • Mirouze M, Paszkowski J (2011). Epigenetic contribution to stress adaptation in plants, Current Opinion in Plant Biology 14 (3): 267-274. doi:10.1016/j.pbi.2011.03.004
  • Neumann P, Yan H, Jiang J (2007). The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176 (2): 749-761. doi:10.1534/ genetics.107.071902
  • Orhan E, Uzundumlu F, Yigider E, Aydin M (2020). The effect of putrescine on DNA methylation on cabbage plant under salt stress conditions. Turkish Journal of Agriculture and Forestry 44 (3):301-311. doi:10.3906/tar-1911-38
  • Ou X, Zhang Y, Xu C, Lin X, Zang Q et al. (2012). Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L). PLoS One 7 (9): e41143. doi:10.1371/journal. pone.0041143
  • Rabinowicz PD (2003). Genes and transposons are differentially methylated in plants, but not in mammals. Genome Research 13 (2): 2658-2664. doi:10.1101/gr.1784803
  • Ritambhara T, Girjesh K (2010). Genetic loss through heavy metal induced chromosomal stickiness in Grass pea. Caryologia 63 (3): 223-228. doi:10.1080/00087114.2010.10589731
  • Rodrigues GZP, Finkler M, Garcia ALH, Gehlen G (2020). Evaluation of transgenerational effects caused by metals as environmental pollutants in Daphnia magna. Environmental Monitoring and Assessment 192 (12): 1-17. doi:10.1007/s10661-020-08713-4
  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M et al. (2007). Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology 164 (10): 1346-1357. doi:10.1016/j.jplph.2006.06.018
  • Schützendübel A, Polle A (2002). Plant responses to abiotic stresses:heavy metal induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53 (372): 1351-1365. doi:10.1093/jxb/53.372.1351
  • Shams M, Yildirim E, Arslan E, Agar G (2020). Salinity induced alteration in DNA methylation pattern, enzyme activity, nutrient uptake and H2 O2 content in pepper (Capsicum annuum L.) cultivars. Acta Physiologiae Plantarum, 42 (4): 1-12. doi:10.1007/s11738-020-03053-9
  • Taspinar MS, Aydin M, Sigmaz B, Yagci S, Arslan E et al. (2018). Aluminum-induced changes on DNA damage, DNA methylation and LTR retrotransposon polymorphism in maize. Arabian Journal for Science and Engineering 43 (1): 123-131. doi:10.1007/s13369-017-2697-6
  • Ueda M, Seki M (2020). Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiology 182 (1): 15-26. doi:10.1104/pp.19.00988
  • Volpe TA, Kidner C, Hall IM et al. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297 (5588): 1833-1837. doi:10.1126/ science.1074973
  • Wang H, He L, Song J, Cui W et al. (2016). Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress. Chemosphere 150: 258- 265. doi:10.1016/j.chemosphere.2016.02.042
  • Wells ML, Price NM, Bruland KW (1994). Iron limitation and the cyanobacterium synechococcus in equatorial pacific waters. Limnology and Oceanography 39: 1481-1486. doi:10.4319/ lo.1994.39.6.1481
  • Yin M, Zhang S, Du X, Mateo RG, Guo W et al. (2021). Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Molecular Ecology Resources 00: 1-17. doi:10.1111/1755-0998.1336