In silico analysis of XTH gene family from barley (Hordeum vulgare L.) and their comparative expression analysis during germination

In silico analysis of XTH gene family from barley (Hordeum vulgare L.) and their comparative expression analysis during germination

Changes in plant cell walls are critical for expansion and growth. Xyloglucan endotransglycosylase/hydrolase (XTH) enzymes are the major modifiers of xyloglucan within the cell wall and are present as large gene families. Despite the paucity of xyloglucan in barley, our analyses of the barley genome revealed at least 42 XTH genes, the most XTH members recorded for a monocot genome to date. In this paper, we show a detailed look at the barley XTH gene family, including detailed bioinformatics analyses of conserved protein motifs and structure, phylogenetic relationships, and a comparison of the expression patterns during germination and seedling growth using RT-qPCR and RNA-Seq analyses. Overall, there was a good correlation between RT-qPCR and RNA-Seq data for similar tissues. RNA-Seq data showed many different expression profile patterns, from broad, high level expression for some XTH genes to highly tissue specific patterns for others. RT-qPCR expression patterns also varied widely between genes. The highest expressing gene, HvXET4, had levels around five times that of the highest control gene tubulin. Given the low levels of xyloglucan found in barley, this high level of expression suggests that the enzyme may be catalysing reactions with other cell wall polysaccharides. We propose roles for many of the HvXTH genes based on the results shown here.

___

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A et al. (2005). Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiology 137: 983-997. doi: 10.1104/pp.104.055087
  • Atkinson RG, Johnston SL, Yauk YK, Sharma NN, Schröder R (2009) Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology 51: 149–157. doi: 10.1016/j. postharvbio.2008.06.014
  • Bailey TL (2011) DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics 27: 1653-1659. doi: 10.1093/ bioinformatics/btr261
  • Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT et al. (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19: 1947-1963. doi: 10.1105/tpc.107.051391
  • Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator. Plant Molecular Biology 61: 451-467. doi: 10.1007/s11103-006-0021-z
  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides. SignalP 3.0. Journal of Molecular Biology 340: 783–795. doi: 10.1016/j.jmb.2004.05.028
  • Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S et al. (2002) Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14: 3073-3088. doi: 10.1105/tpc.007773
  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and Molecular Biology of Plants. 2nd ed. Chichester, West Sussex, England: Wiley.
  • Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M et al. (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biology 17: 66. doi: 10.1186/s13059- 016-0924-1
  • Burstin J (2000) Differential expression of two barley XET-related genes during coleoptile growth. Journal of Experimental Botany 51: 847-852. doi: 10.1093/jxb/51.346.847
  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology 134:24-236. doi: 10.1104/pp.103.032904
  • Campbell P, Braam J (1998) Co- and/or post-translational modifications are critical for TCH4 XET activity. The Plant Journal 15: 553-561. doi: 10.1046/j.1365-313x.1998.00239.x.
  • Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends in Plant Science. 4: 361–366. doi: 10.1016/ s1360-1385(99)01468-5
  • Carpita N, Tierney M, Campbell M (2001) Molecular biology of the plant cell wall: searching for the genes that define structure, architecture and dynamics. Plant Molecular Biology 47:1-5. doi: 10.1007/978-94-010-0668-2_1
  • Colmsee C, Beier S, Himmelbach A, Schmutzer T, Stein N et al. (2015) BARLEX - the Barley Draft Genome Explorer. Molecular Plant 8: 964-966. doi: 10.1016/j.molp.2015.03.009
  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Research 40: D1194-D1201. doi: 10.1093/nar/ gkr938
  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23: 2334-2336. doi: 10.1093/bioinformatics/btm331
  • Eklöf JM, Brumer H (2010). The XTH Gene Family: An update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology 153(2): 456–466. doi: 10.1104/ pp.110.156844
  • Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME et al. (2017) Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-RT-qPCR expression data. Scientific Reports 7: 1559. doi: 10.1038/s41598-017-01617-3
  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK et al. (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochemical Journal 282: 821-828. doi: 10.1042/bj2820821
  • Fu MM, Liu C, Wu F (2019) Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in barley (Hordeum vulgare). Molecules 24: 1935. doi:10.3390/molecules24101935
  • Geisler-Lee J, Geisler M, Coutinho PM, Segerman B, Nishikubo N et al. (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiology 140: 946-962. doi: 10.1104/pp.105.072652
  • Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005) Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221: 729-738. doi: 10.1007/s00425-005-1481- 0
  • Green PB (1980) Organogenesis - a biophysical view. Annual Review of Plant Physiology 31: 51-82. doi: 10.1146/annurev. pp.31.060180.000411
  • Harvey AJ, Kaewthai N, Hrmova M, Brumer H, Ezcurra I et al (2010) Heterologous expression of diverse barley XTH genes in the yeast Pichia pastoris. Plant Biotechnology 27: 251–258. doi: 10.5511/plantbiotechnology.27.251
  • Hématy K, Höfte H (2007) Cellulose and cell elongation. In: Verbelen JP, Vissenberg K (editors). The expanding cell. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 33-56.
  • Hoffman M, Jia Z, Pena MJ, Cash M, Harper A et al (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydrate Research 340: 1826-1840. doi: 10.1016/j.carres.2005.04.016
  • Huson DH, Scornavacca C (2012) Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Systematic Biology 61: 1061-1067. doi: 10.1093/sysbio/sys062
  • Hrmova M, Farkas V, Lahnstein J, Fincher GB (2007) A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-beta-D-glucans. Journal of Biological Chemistry 282: 12951-12962. doi: 10.1074/jbc. M611487200
  • Hrmova M, Farkas V, Harvey AJ, Lahnstein J, Wischmann B et al (2009) Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.). FEBS Journal, 276(2), 437–456. doi: 10.1111/j.1742-4658.2008.06791.x
  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S et al (2007) F-Box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology 143 :1467-1483. doi: 10.1104/pp.106.091900
  • Johansson P, Brumer H, Baumann MJ, Kallas AM, Henriksson H et al (2004) Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16: 874-886. doi: 10.1105/ tpc.020065
  • Kaewthai N, Gendre D, Eklof JM, Ibatullin FM, Ezcurra I et al (2013) Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant Physiology 161: 440-454. doi: 10.1104/ pp.112.207308
  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12 (4):357- 60. doi: 10.1038/nmeth.3317
  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods, 9: 357-359. doi: 10.1038/ nmeth.1923
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. doi: 10.1093/bioinformatics/btm404
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al (2009) The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25: 2078-2079. doi: 10.1093/bioinformatics/ btp352
  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27 (21): 2987-2993. doi: 10.1093/bioinformatics/btr509
  • Liu Y, Liu D, Zhang H, Gao H, Guo X et al (2007) The alpha- and beta- expansin and xyloglucan endotransglucosylase/hydrolase gene families of wheat: Molecular cloning, gene expression, and EST data mining. Genomics, 90: 516-529. doi: 10.1016/j. ygeno.2007.06.012
  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490–D495. doi: 10.1093/nar/ gkt1178
  • Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Letters 583: 3966- 3973. doi: 10.1016/j.febslet.2009.10.036
  • Maris A, Kaewthai N, Eklof JM, Miller JG, Brumer H et al (2011) Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. Journal of Experimental Botany 62: 261- 271. doi: 10.1093/jxb/erq263
  • Mark P, Baumann MJ, Eklof JM, Gullfot F, Michel G et al (2009) Analysis of nasturtium TmNXG1 complexes by crystallography and molecular dynamics provides detailed insight into substrate recognition by family GH16 xyloglucan endotransglycosylases and endo-hydrolases. Proteins: Structure, Function, and Bioinformatics 75: 820–836. doi: 10.1002/ prot.22291
  • Mbeguie AMD, Hubert O, Baurens FC, Matsumoto T, Chillet M (2009) Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop. Journal of Experimental Botany 60: 2021-2034. doi: 10.1093/jxb/erp079
  • Mccann MC, Wells B, Roberts K (1990) Direct visualization of crosslinks in the primary plant cell wall. Journal of Cell Science 96: 323-334. doi: 10.1242/jcs.96.2.323
  • Newton AC, Flavell AJ, George TS, Leat PT, Mullholland B et al (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security 3:141. doi: 10.1007/s12571-011-0126-3
  • Obel N, Neumetzler L, Pauly M (2007) Hemicelluloses and cell expansion. In: Verbelen JP, Vissenberg K (editors). The expanding cell. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 57-88.
  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35: D883-887. doi: 10.1093/ nar/gkl976
  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016). Transcriptlevel expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature protocols 11 (9): 1650-1667. doi:10.1038/nprot.2016.095
  • Rose JK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiology 43:1421-1435. doi: 10.1093/pcp/pcf171
  • Sakurai N, Masuda Y (1978) Auxin-induced changes in barley coleoptile cell wall composition. Plant and Cell Physiology 19:1217-1223. doi: 10.1093/oxfordjournals.pcp.a075702
  • Schünmann PHD, Smith RC, Lång V, Matthews PR, Chandler PM (1997) Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant, Cell & Environment 20: 1439-1450. doi: 10.1046/j.1365-3040.1997. d01-49.x
  • Seven M, Derman C, Harvey A (2021) Enzymatic characterization of ancestral/group-IV clade xyloglucan endotransglycosylase/ hydrolase enzymes reveals broad substrate specificities. The Plant Journal 106: 1660–1673. doi: 10.1111/tpj.15262
  • Smith RC, Matthews PR, Schünmnn PHD, Chandler PM (1996) The regulation of leaf elongation and xyloglucan endotransglycosylase by gibberellin in ‘Himalaya’ barley (Hordeum vulgare L.). Journal of Experimental Botany 47: 1395-1404. doi: 10.1093/jxb/47.9.1395
  • Stratilova B, Sestak S, Mravec J, Garajova S, Pakanova Z et al (2020) Another building block in the plant cell wall: barley xyloglucan xyloglucosyl transferases link covalently xyloglucan and anionic oligosaccharides derived from pectin. The Plant Journal 104: 752–767. doi: 10.1111/tpj.14964
  • Strohmeier M, Hrmova M, Fischer M, Harvey AJ, Fincher GB et al (2004) Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/ hydrolases in cell wall modification in the poaceae. Protein Science 13: 3200-3213. doi: 10.1110/ps.04828404
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G et al (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28 (5): 511-515. doi: 10.1038/nbt.1621
  • Trethewey JAK, Harris PJ (2002) Location of (1 → 3)- and (1 → 3), (1 → 4)-β-D-glucans in vegetative cell walls of barley (Hordeum vulgare) using immunogold labelling. New Phytologist 154: 347-358. doi: 10.1046/j.1469-8137.2002.00383.x
  • Vaaje-Kolstad G, Farkaš V, Hrmova M, Fincher GB (2010) Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites. Biochimica et Biophysica Acta - General Subjects 1800: 674–684. doi: 10.1016/j.bbagen.2010.04.001
  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Science 9: 203-209. doi: 10.1016/j.tplants.2004.02.005
  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant & Cell Physiology 42: 1025–1033. doi: 10.1093/pcp/pce154
  • Yokoyama R, Rose JK, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiology 134: 1088-1099. doi: 10.1104/pp.103.035261
  • Zhang MP, Liu Y-H, Chang C-S, Zhi H, Wang S et al (2018) Quantification of gene expression while taking into account RNA alternative splicing. Genomics. 111 (6): 1517-1528. doi: 10.1016/j.ygeno.2018.10.009
  • Zykwinska A, Thibault J-F, Ralet M-C (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydrate Polymers 74: 957-961. doi: 10.1016/j. carbpol.2008.05.004