DNA barcoding analysis and phylogenetic relationships of Indian wild coffee species

DNA barcoding analysis and phylogenetic relationships of Indian wild coffee species

Wild coffee species are the reservoirs of genetic diversity and could play a critical role in the genetic improvement of coffee. However, the conservation and genetic assessment of wild coffee species has been largely neglected. In the present study, DNA barcoding approaches were employed to assess the phylogenetic relationships between five indigenous wild coffee species from India and compared with two cultivated, and four wild coffee species of African origin. The efficacy of three barcoding loci namely matK, rbcL, and trnL-trnF was investigated using PCR amplification and sequence characterization. The intergenic spacer trnL-trnF is the highly polymorphic loci followed by matK and rbcL chloroplast gene. Among the three barcoding loci, the matK locus has the maximum number of parsimony informative sites, whereas the trnL-trnF locus contains maximum singleton variable sites. Although all the three loci contain a few unique fixed nucleotides (UFNs), no individual barcode locus has the critical nucleotide sequence tags for all the five Indian wild coffee species that help in species discrimination. However, the multilocus combinations are efficient in discriminating the species due to the presence of SNPs and specific sequence tags. The phylogenetic tree constructed using the maximum likelihood analysis of the combined barcoding loci separated all the Indian wild coffee species from African wild coffee species compared to phylogeny inferred using individual barcoding loci. Our study supports the utility of DNA barcoding as a useful tool for coffee species identification, which can be used for conservation purposes.

___

  • Anthony F, Diniz LEC, Combes MC, Lashermes P (2010). Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar. Plant Systematics and Evolution 285:51-64. doi: 10.1007/s00606-009-0255-8
  • Attigala L, Triplett JK, Kathriarachchi HS, Clark LG (2014). A new genus and a major temperate bamboo lineage of the Arundinarieae (Poaceae: Bambusoideae) from Sri Lanka based on a multi-locus plastid phylogeny. Phytotaxa 174: 187-205. doi: 10.11646/phytotaxa.174.4.1
  • Barchi L, Pietrella M, Venturini L, Minio A, Toppino L et al. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports 9:11769. doi:10.1038/s41598-019-47985-w
  • CBOL Plant Wording Group (2009). DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106:12794-12797. doi: 10.1073/ pnas.0905845106
  • Cuenoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ et al. (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132-144. doi: 10.3732/ajb.89.1.132
  • Davis AP (2011). Psilanthus mannii, the type species of Psilanthus, transferred to Coffea. Nordic Journal of Botany 29: 471-472. doi:10.1111/j.1756-1051.2011.01113.x
  • Davis AP, Chadburn H, Moat J (2019). High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances 5: eaav3473.doi: 10.1126/sciadv.aav3473
  • de Melo Moura CC, Brambach F, Jair Bado KJH, Krutovsky KV, Kreft H et al. (2019). Integrating DNA barcoding and traditional taxonomy for the identification of Dipterocarps in Remnant Lowland Forests of Sumatra. Plants 8 (11):461. doi:10.3390/ plants8110461
  • DeSalle R, Egan MG, Mark S (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B 360:1905-1916. doi:10.1098/rstb.2005.1722
  • Dev SA, Sijimol K, Prathibha PS, Sreekumar VB, Muralidharan EM (2020). DNA barcoding as a valuable molecular tool for the certification of planting materials in bamboo. 3 Biotech 10 (2):59. doi: 10.1007/s13205-019-2018-8
  • Du ZY, Qimike A, Yang CF, Chen JM, Wang QF (2011). Testing four barcoding markers for species identification of Potamogetonaceae. Journal of Systematics and Evolution 49:246-251.doi: 10.1111/j.1759-6831.2011.00131.x
  • Girma G, Spillane C, Gedil M (2016). DNA barcoding of the main cultivated yams and selected wild species in the genus Dioscorea. Journal of Systematics and Evolution 54: 228-237. doi: 10.1111/jse.12183
  • Gogoi B, Wann SB, Saikia SP (2020). DNA barcodes for delineating Clerodendrum species of North East India. Scientific Reports 10: 13490. doi:10.1038/s41598-020-70405-3
  • Guyeux C, Charr J-C, Tran HTM, Furtado A, Henry RJ (2019). Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species. PLoS ONE 14 (6): e0216347.doi:10.1371/journal.pone.0216347
  • Hamon P, Grover CE, Davis AP, Rakotomalala JJ, Raharimalala NE et al. (2017). Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content. Molecular Phylogenetics and Evolution 109:351-361. doi: 10.1016/j. ympev.2017.02.009
  • Hao DC, Huang BL, Chen SL, Mu J (2009). Evolution of the chloroplast trnL-trnF region in the gymnosperm Lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351- 369. doi: 10.1007/s10528-009-9233-7
  • Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S et al. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106:12794-12797. 10.1073/pnas.0905845106.
  • Hollingsworth PM, Graham SW, Little DP (2011). Choosing and using a plant DNA barcode. PLoS ONE 6. doi: 10.1371/journal. pone.0019254 References
  • Hosein FN, Austin N, Maharaj S, Johnson W, Rostant L et al. (2017). Utility of DNA barcoding to identify rare endemic vascular plant species in Trinidad. Ecology and Evolution 7: 7311-7333. doi:10.1002/ece3.3220
  • International Coffee Organization (ICO) Report (2021). Coffee market ends 2019/20 in surplus. https://icocoffeeorg.tumblr. com/post/178884744500/coffee-market-ends-201718-insurplus. [accessed 11 August 2021].
  • Ismail M, Ahmad A, Nadeem M, Javed MA, Khan SH et al. (2020). Development of DNA barcodes for selected Acacia species by using rbcL and matK DNA markers, Saudi Journal of Biological Sciences 27 (12):3735-3742. doi: 10.1016/j.sjbs.2020.08.020
  • Jiang KW, Zhang R, Zhang ZF, Pan B, Tian B (2020). DNA barcoding and molecular phylogeny of Dumasia (Fabaceae: Phaseoleae) reveals a cryptic lineage. Plant Diversity 42(5):376-385. doi: 10.1016/j.pld.2020.07.007
  • Jingade P, Huded AKC, Mishra MK (2021). First report on genome size and ploidy determination of five indigenous coffee species using flow cytometry and stomatal analysis. Brazilian Journal of Botany 44:381-389. doi: 10.1007/s40415-021-00714-y
  • Kang Y (2021). Molecular identification of Aquilaria species with distribution records in China using DNA barcode technology, Mitochondrial DNA Part B 6 (4):1525-1535.doi: 10.1080/23802359.2021.1914210
  • Kaya E, Vatansever R, Filiz E (2018). Assessment of the genetic relationship of Turkish olives (Olea europaea subsp. europaea) cultivars based on cpDNA trnL-F regions. Acta Botanica Croatica 77 (1): 88-92.doi: 110.1515/botcro-2017-0019
  • Kress WJ, Erickson DL, Jones FA (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences of the United States of America 106 (44):18621-6. doi: 10.1073/ pnas.0909820106
  • Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015). DNA barcodes for ecology, evolution, and conservation, Trends in Ecology & Evolution 30 (1):25-35. doi:10.1016/j. tree.2014.10.008
  • Langridge P, Waugh R (2019). Harnessing the potential of germplasm collections. Nature Genetics 51:200-201. doi: 10.1038/s41588- 018-0340-4
  • Lefebvre-Pautigny F, Wu F, Philippot M, Rigoreau M, Priyono, et al. (2010). High resolution synteny maps allowing direct comparisons between the coffee and tomato genomes. Tree Genetics & Genomes. 6. 10.1007/s11295-010-0272-3.
  • Li X, Yang Y, Henry RJ, Rossetto M, Wang Y et al. (2015). Plant DNA barcoding: from gene to genome: Plant identification using DNA barcodes. Biological Reviews 90:157-166. doi: 10.1111/ brv.12104
  • Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25 (11):1451-1452. doi: 10.1093/bioinformatics/btp187
  • Mahadani P, Ghosh SK (2014). Utility of indels for species-level identification of a biologically complex plant group: a study with intergenic spacer in Citrus. Molecular Biology Reporter 41:7217-7222.doi:10.1007/s11033-014-3606-7
  • Maurin O, Davis AP, Chester M, Mvungi EF, Jaufeerally-Fakim Y et al. (2007). Towards a Phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Annals of Botany 100:1565-1583. doi: 10.1093/aob/mcm257
  • Meena RK, Negi N, Uniyal N, Shamoon A, Bhandari MS et al. (2020). Chloroplast-based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. 3 Biotech 10:534. doi:10.1007/s13205- 020-02508-7
  • Migicovsky Z, Warschefsky E, Klein LL, Miller AJ (2019). Using living germplasm collections to characterize, improve, and conserve woody perennials. Crop Science 59: 2365-2380. doi: 10.2135/cropsci2019.05.0353
  • Mishra MK, Slater A (2012). Recent advances in the genetic transformation of coffee. Biotechnology Research International. doi:10.1155/2012/580857
  • Mishra MK, Huded AKC, Jingade P (2020). Assessment of the suitability of molecular SCoT markers for genetic analysis of coffee species. Botanica 26 (2):184-196. doi: 10.2478/ botlit-2020-0019
  • Mishra MK, Nishani S, Suresh N, Satheesh SK, Soumya PR et al. (2012). Genetic diversity among Indian coffee cultivars determined via molecular markers. Journal of Crop Improvement 26:1-24. doi: 10.1080/15427528.2012.696085
  • Mishra MK, Padmajyothi D, Surya Prakash N, Sreenivasan MS, Srinivasan CS (2011). Variability in stomatal features and leaf venation pattern in Indian coffee (Coffea arabica L.) cultivars and their functional significance. Botanica Serbica 35:111-119.
  • Mishra MK (2019). Genetic resources and breeding of coffee (Coffea spp.) In: Jameel M. Al-Khayri, S. Mohan Jain and Dennis V. Johnson (Editors) Advances in Plant Breeding Strategies, Vol. 4 Nut and Industrial Crops. Springer Publisher. pp. 475-515. doi: 10.1007/978-3-030-23112-5
  • Narasimhaswamy RL, Vishweshwara S (1963). A note on the occurrence of three species of Coffea indigenous to India. Turrialba 5:65-71.
  • Nguyen GN, Norton SL (2020). Genebank Phenomics: A Strategic Approach to Enhance Value and Utilization of Crop Germplasm. Plants 9 (7): 817. doi: 10.3390/plants9070817
  • Pettengill JB, Neel MC (2010). An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus Agalinis (Orobanchaceae). American Journal of Botany 97 (8):1391-406. doi: 10.3732/ajb.0900176
  • Pham MP, Tran VH, Vu DD, Nguyen QK, Shah SNM (2021). Phylogenetics of native conifer species in Vietnam based on two chloroplast gene regions rbcL and matK. Czech Journal of Genetics and Plant Breeding 57: 58-66.doi: 10.17221/88/2020-CJGPB
  • Rozas J (2009). DNA sequence polymorphism analysis using DnaSP. Methods in Molecular Biology 537:337-50. doi: 10.1007/978- 1-59745-251-9_17
  • Saha K, Dholakia BB, Sinha RK (2020). DNA barcoding of selected Zingiberaceae species from North-East India. Journal of Plant Biochemistry and Biotechnology 29: 494-502. doi: 10.1007/ s13562-020-00563-y
  • Sivarajan VV, Biju SD, Mathew P (1992). Revision of the genus Psilanthus Hook.f.(Rubiaceae, tribe Coffeeae), in India. Botanical Bulletin of Academia Sinica 33:209-224.
  • Skuza L, Szucko I, Filip E, Adamczyk A (2018). DNA barcoding in selected species and subspecies of Rye (secale) using three chloroplast loci (matK, rbcL, trnH-psbA). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47 (1):54-62. doi: 10.15835/ nbha47111248
  • Taberlet P, Gielly L, Pautou G (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17:1105-1109. doi: 10.1007/ BF00037152
  • Tamura K, Peterson D, Peterson N (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739. doi: 10.1093/ molbev/msr121
  • Tanaka S, Ito M (2020). DNA barcoding for identification of agarwood source species using trnL-trnF and matK DNA sequences. Journal of Natural Medicine 74: 42-50. doi: 10.1007/ s11418-019-01338-z
  • Unsal SG, Ciftci YO, Eken BU, Velioglu E, Marco GD et al. (2019). Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach. Tree Genetics and Genomes 15:16. doi:10.1007/s11295-019- 1323-z
  • von Crautlein M, Korpelainen H, Pietilainen M, Rikkinen J (2011). DNA barcoding: a tool for improved taxon identification and detection of species diversity. Biodiversity and Conservation 20: 373-380. doi: 10.1007/s10531-010-9964-0
  • Wang C, Hu S, Hu Z, Gardner C, Lubberstedt T (2017). Emerging Avenues for Utilization of Exotic Germplasm. Trends in Plant Science 22: 7. doi:10.1016/j.tplants.2017.04.002
  • Wu F, Li M, Liao B, Shi X, Xu Y (2019). DNA barcoding analysis and phylogenetic relation of mangroves in Guangdong Province, China. Forests 10 (1):56. doi:10.3390/f10010056
  • Yan HF, Hao G, Hu CM, Xue-Jun GE (2011). DNA Barcoding in closely related species: A case study of Primula L. sect. Proliferae Pax (Primulaceae) in China. Journal of Systematics and Evolution 49:225-236.: doi:10.1111/j.1759-6831.2011.00115.x