Genetic diversity and molecular characterization of natural Pancratium maritimum L. populations by DNA markers

Genetic diversity and molecular characterization of natural Pancratium maritimum L. populations by DNA markers

Bulbous plants play an important role in Turkey’s biodiversity due to their great potential use in various industries. Sea daffodils (Pancratium maritimum), one aspect of Turkey’s biological richness, represent an important bulbous plant that generally spreads on sand dunes and can be seen only on the Mediterranean coast and on its certain beaches in our country. In this study, the genetic structure and genetic diversity of four natural P. maritimum populations have been determined by RAPD and nrSSR primers. Eight RAPD and four nrSSR loci were analyzed. All RAPD and nrSSR loci, except SSR-20, were found to be polymorphic. Genetic diversity parameters such as mean number of alleles for each nrSSR loci $(N_a = 3.313)$, effective allele number $(N_e = 2.190)$, Shannon’s information index (I = 0.728), observed heterozygosity $(H_o = 0.449)$ and expected heterozygosity $(H_e = 0.396)$ were calculated. A rather high proportion of the genetic diversity (81% for nrSSR, 72% for RAPD) was due to within-population variation and the remaining part was due to variation between populations. According to the acquired UPGMA phenogram for RAPD and nrSSR data, the İğneada and Çamlıkoy populations, which are geographically close, are also genetically the most similar populations. The STRUCTURE analysis results supported the constructed UPGMA phenogram for the studied sea daffodil populations. The results of this study include important information about the genetic structure of the studied populations.

___

  • Balestri E, Cinelli F (2004). Germination and early-seedling establishment capacity of Pancratium maritimum L. (Amaryllidaceae) on coastal dunes in the North-Western Mediterranean. J Coastal Res 20: 761-770.
  • Bogdanova Y, Pandova B, Yanev S, Stanilova M (2009). Biosynthesis of lycorine by in vitro cultures of Pancratium maritimum L. (Amaryllidaceae). Biotechnol Biotechn Eq 23: 919-922.
  • Ciccarelli D (2015). Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession? Estuar Coast Shelf S 165: 247-253.
  • Davis PH (1984). Flora of Turkey and the East Aegean Islands. Edinburgh, UK: Edinburgh University Press.
  • De Castro O, Brullo S, Colombo P, Jury S, De Luca P, Di Maio A (2012). Phylogenetic and biogeographical inferences for Pancratium (Amaryllidaceae), with an emphasis on the Mediterranean species based on plastid sequence data. Bot J Linn Soc 170: 12-28.
  • De Castro O, Di Maio A, Di Febbraro M, Imparato G, Innangi M, Vela E, Menale B (2016). A multi-faceted approach to analyse the effects of environmental variables on geographic range and genetic structure of a perennial psammophilous geophyte: the case of the sea daffodil Pancratium maritimum L. in the Mediterranean basin. PLoS One 11: e0164816.
  • Demir A (2013). Sürdürülebilir gelişmede yükselen değer; biyolojik çeşitlilik açısından Türkiye değerlendirmesi. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24: 67-74 (in Turkish).
  • Demir Z, Muderrisoglu H, Aksoy N, Aydin SO, Uzun S, Ozkara H (2010). Effects of second housing and recreational use on Pancratium maritimum L. population in western Black Sea region of Turkey. J Food Agric Environ 8: 890-894.
  • Di Maio A, De Castro O (2013). Development and characterization of 21 microsatellite markers for Pancratium maritimum L. (Amaryllidaceae). Conserv Genet Resour 5: 911-914.
  • Earl DA, vonHoldt BM (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359-361.
  • Ekim T, Koyuncu M, Vural M, Duman H, Aytaç Z, Adıgüzel N (2000). Red Data Book of Turkish Plants (Pteridophyta and Spermatophyta). Ankara, Turkey: Turkish Association for Conservation of Nature (in Turkish).
  • El-Hadidy A, El-Ghani MA, Amer W, Hassan R (2012). Morphological and molecular differentiation between Egyptian species of Pancratium L. (Amaryllidaceae). Acta Biol Cracov Bot 54: 53- 64.
  • Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611-2620.
  • Excoffier L, Laval G, Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47-50.
  • FAO (2010). The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome, Italy: FAO.
  • Georgiev V, Ivanov I, Berkov S, Pavlov A (2011). Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33: 927-933.
  • Giovino A, Domina G, Bazan G, Campisi P, Scibetta S (2015). Taxonomy and conservation of Pancratium maritimum (Amaryllidaceae) and relatives in the Central Mediterranean. Acta Bot Gallica 162: 289-299.
  • Grassi F, Cazzanigal E, Minuto L, Peccenini S, Barberis G, Basso BG (2005). Evaluation of biodiversity and conservation strategies in Pancratium maritimum L. for the Northern Tyrrhenian Sea. Biodivers Conserv 14: 2159-2169.
  • Gümüş C (2015). Kum zambağı (Pancratium maritimum L.) bitkisinde yapılan araştırmalar üzerinde bir inceleme. Derim 32: 89-105 (in Turkish).
  • Güner A, Özhatay N, Ekim T, Başer KHC (2000). Flora of Turkey Vol. 11 (Supplement 2). Edinburgh, UK: Edinburgh University Press.
  • Hetta MH, Shafei AA (2013). Comparative cytotoxic and antimicrobial activities of the alkaloid content of Egyptian Pancratium maritimum L. fruits and flowers. Journal of American Science 9: 104-109.
  • Hocagil MM, Pınar H, Ulun A (2010). Mersin ilinde iki farklı bölgede belirlenen kum zambağı genotiplerinin genetik farklılıklarının SRAP ve RAPD markırları yardımıyla belirlenmesi. In: IV. Ulusal Süs Bitkileri Kongresi, 20–22 September, Erdemli, Mersin, pp. 245-250 (in Turkish).
  • Ibrahim SRM, Mohamed GA, Shaala LA, Youssef DTA, El-Sayed KA (2013). New alkaloids from Pancratium maritimum. Planta Med 79: 1480-1484.
  • Ioset JR, Marston A, Mahabir P G, Hostettmann K (2001). A methylflavan with free radical scavenging properties from Pancratium littorale. Fitoterapia 72: 35-39.
  • Koyuncu M, Alp S (2014). New geophyte taxa described from Turkey at last decade. Yüzüncü Yıl University Journal of Agriculture Science 24: 101-110.
  • Medrano M, Guitian P, Guitian J (1999). Breeding system and temporal variation in fecundity of Pancratium maritimum L. (Amaryllidaceae). Flora 194: 13-19.
  • Nei M (1987). Molecular Evolutionary Genetics. New York, NY, USA: Columbia University Press.
  • Nikopoulos D, Alexopoulos AA (2008). In vitro propagation of an endangered medicinal plant: Pancratium maritimum L. J Food Agric Environ 6: 393-398.
  • Nikopoulos D, Nikopoulou D, Alexopoulos AA (2008). Methods for the preservation of genetic material of Pancratium maritimum (Amaryllidaceae). J Food Agric Environ 6: 538-546.
  • Ogwu MC, Osawaru ME, Ahana CM (2014). Challenges in conserving and utilizing plant genetic resources (PGR). Int J Genet Mol Biol 6: 16-22.
  • Peakall R, Smouse PE (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288-295.
  • Perrone R, Salmeri C, Brullo S, Colombo P, De Castro O (2015). What do leaf anatomy and micro-morphology tell us about the psammophilous Pancratium maritimum L. (Amaryllidaceae) in response to sand dune conditions? Flora 213: 20-31.
  • Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945- 959.
  • Sanaa A, Abid SB, Boulila A, Messaoud C, Boussaid M, Fadhel NB (2015). Modeling hydrochory effects on the Tunisian island populations of Pancratium maritimum L. using colored Petri nets. Biosystems 129: 19-24.
  • Sanaa A, Boulila A, Bousaid M, Ben Fadhel N (2013). Alginic acid and derivatives, new polymers from the endangered Pancratium maritimum L. Ind Crop Prod 44: 290-293.
  • Sanaa A, Boulila A, Boussaid M, Ben Fadhel N (2014). Pancratium maritimum L. in Tunisia: genetic and chemical studies among the threatened populations. Ind Crop Prod 60: 75-78.
  • Sanaa A, Fadhel NB (2010). Genetic diversity in mainland and island populations of the endangered Pancratium maritimum L. (Amaryllidaceae) in Tunisia. Sci Hortic 125: 740-747.
  • Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, McLachlan A (2008). Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar Ecol 29: 70-90.
  • Şekercioğlu, CH, Anderson S, Akçay E, Bilgin R, Can ÖE, Semiz G, Tavşanoğlu Ç, Yokeş MB, Soyumert A, İpekdal K et al. (2011). Turkey’s globally important biodiversity in crisis. Biol Conserv 144: 2752-2769.
  • Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016). Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39: 312-328.
  • Yaltırık F, Efe A (1996). Otsu Bitkiler Sistematiği. Ders Kitabı. İstanbul, Turkey: İstanbul Üniversitesi Orman Fakültesi Yayınları (in Turkish).
  • Yeh FC, Yang R, Boyle T (1999). POPGENE Version 1.32. WindowsBased Software for Population Genetics Analysis. Calgary, Canada: University of Alberta.
  • Zahreddine H, Clubbe C, Baalbaki R, Ghalayini A, Talhouk SN (2004). Status of native species in threatened Mediterranean habitats: the case of Pancratium maritimum L. (sea daffodil) in Lebanon. Biol Conserv 120: 11-18.