Comparative morphological and cytogenetic study of five Asparagus (Asparagaceae) species from Algeria including the endemic A. altissimus Munby

Comparative morphological and cytogenetic study of five Asparagus (Asparagaceae) species from Algeria including the endemic A. altissimus Munby

Forty wild populations belonging to five Asparagus species including the endemic A. altissimus were sampled in an eastwest bioclimatic gradient of North Algeria. More than 250 individuals were taxonomically examined and karyologically investigated. Meiotic behavior was analyzed for each species. New chromosome numbers were consistent with the base number x = 10 for the genus Asparagus, and two cytotypes, diploid and hexaploid, were observed. Four species were found to have 2n = 20 chromosomes, highlighting the prominence of diploidy in North Africa. One polyploid with 2n = 60 is reported here as the first karyological information on the endemic A. altissimus. Karyotype parameters were established and compared for diploid species. New data provided for A. acutifolius and A. albus indicate differences in the number of submetacentric chromosomes and genome size estimated by total chromosome length. A. acutifolius is distinguished by the largest genome, the smallest being that of A. horridus. The hexaploid cytotype consists of very small metacentric chromosomes. All diploid species displayed regular meiotic behavior with mostly bivalent pairing. Abnormalities, including univalents, multivalents, laggards, and bridges, were sometimes observed in A. horridus and A. officinalis. The new cytogenetic information provided in this study is discussed in the biogeographic context of the North African flora.

___

  • African Plant Database (2016). Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria (Version 3.4.0). Available online at http:// www.ville-ge.ch/musinfo/bd/cjb/africa/ (accessed November 2016).
  • Amirouche R, Misset MT (2009). Flore spontanée d’Algérie: différenciation écogéographique des espèces et polyploïdie. Cah Agric 18: 474-480 (in French).
  • APG IV (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181: 1-20.
  • Azizi N, Amirouche R, Amirouche N (2016). Karyological investigations and new chromosome number reports in Bellevalia Lapeyrouse, 1808 and Muscari Miller, 1758 (Asparagaceae) from Algeria. Comp Cytogen 10: 171-187.
  • Bellakhdar J (1998). La pharmacopée marocaine traditionnelle: Médecine arabe ancienne et savoirs populaires. Saint-Etienne, France: Ibis (in French).
  • Borgen L (1969). Chromosome numbers of vascular plants from the Canary Islands with special reference to the occurrence of polyploidy. Nytt Mag Bot 16: 81-121.
  • Bozzini A (1959). Revisione cito-sistematica del genere Asparagus L. Caryologia 12: 199-264 (in Spanish).
  • Bramwell D, Pérez de Paz J, Ortega J (1976). Studies in the flora of Macaronesia. Some chromosome numbers of flowering plants. Bot Macar 1: 9-16.
  • Camadro EL (1994). Second meiotic division restitution (SDR) 2n pollen formation in diploid and hexaploid species of Asparagus. Genet Resour Crop Ev 41: 1-7.
  • Castro P, Gil J, Cabrera A, Moreno R (2013). Assessment of genetic diversity and phylogenetic relationships in Asparagus species related to Asparagus officinalis. Genet Resour Crop Ev 60: 1275-1288.
  • Clifford HT, Conran JG (1987). Asparagaceae. In: George AS, editor. Flora of Australia. Canberra, Australia: Australian Government Publishing Service, pp. 140-142.
  • Fellingham AC, Meyer NL (1995). New combinations and a complete list of Asparagus species in southern Africa (Asparagaceae). Bothalia 25: 205-209.
  • Govaerts R (2016). World Checklist of Selected Plant Families Asparagaceae. Kew, UK: Royal Botanic Gardens. Available online at http://apps.kew.org/wcsp/ (accessed November 2016).
  • Hamouche Y, Amirouche N, Misset MT, Amirouche R (2010). Cytotaxonomy of autumnal flowering species of Hyacinthaceae from Algeria. Plant Syst Evol 285: 177-187.
  • Harkess A, Mercati F, Abbate L, McKain M, Pires JC, Sala T, Sunseri F, Falavigna A, Leebens-Mack J (2016). Retrotransposon proliferation coincident with the evolution of dioecy in Asparagus. G3-Genes Genom Genet 6: 2679-2685.
  • Heneidy SZ, Bidak LM (2004). Potential uses of plant species of the coastal Mediterranean region, Egypt. Pak J Biol Sci 7: 1010- 1023.
  • Jena S, Das AB (2003). Karyotype variation and genomic characterization in five monocotyledonous mangrove associate from Orissa coast. Iran J Bot 10: 7-13.
  • Kanno A, Yokoyama J (2011). Asparagus. In: Kole C, editor. Wild Crop Relatives: Genomic and Breeding Resources: Vegetables. Berlin, Germany: Springer, pp. 23-42.
  • Kar DK, Sen S (1985). Chromosome characteristics of Asparagussapogenin yielding plant. Cytologia 50: 147-155.
  • Khedim T, Amirouche N, Amirouche R (2016). Morphological and cytotaxonomic data of Allium trichocnemis and A. seirotrichum (Amaryllidaceae) endemic to Northern Algeria, compared with A. cupanii group. Phytotaxa 243: 247-259.
  • Kondo K, Smirnov SV, Kucev M, Shimakov AI (2014). A chromosome study in A. officinalis L. in Mt. Altai. Chromosome Botany 9: 123-124.
  • Kubota S, Konno I, Kanno A (2012). Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden Asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124: 345-354.
  • Kumar M, Kumar Naik PS, Chhocar V (2015). Genetic variations in Asparagus racemosus, an endangered medicinal herb endemic to India using RADP markers. Br Biotechnol J 10: 1-11.
  • Levan A, Freda K, Sandberg AA (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52: 201- 220.
  • Loptien H (1979). Identification of the sex chromosome pair in Asparagus (Asparagus officinalis L.). Z Pflanzenzücht 82: 162- 173.
  • Maire R (1958). Flore de l’Afrique du nord. Vol. 5. Paris, France: P. Lechevalier (in French).
  • Moreno R, Espejo JA, Cabrera A, Gil J (2008). Origin of tetraploid cultivated Asparagus landraces inferred from nuclear ribosomal DNA internal transcribed spacers’ polymorphisms. Ann Appl Biol 153: 233-241.
  • Mukhopadhyay S, Ray S (2013). Chromosome and marker-based genome analysis of different species of Asparagus. Cytologia 78: 425-437.
  • Munby G (1855). Notice sur quelques plantes d’Algérie. B Soc Bot Fr 2: 282-289 (in French).
  • Naidu MT, Kumar OA, Venkaiah M (2014). Taxonomic diversity of lianas in tropical forests of Northern Eastern Ghats of Andhra Pradesh, India. Not Sci Biol 6: 59-65.
  • Nathar VN, Dhoran VS, Gudadhe SP (2013). Meiotic analysis and pollen viability in Asparagus racemosus var. javanica (Kunth) Baker. Ann Pl Sci 2: 108-113.
  • Norup MF, Petersen G, Burrows S, Bouchenak-Khelladi Y, LeebensMack J, Pires JC, Peter Linder H, Seberg O (2015). Evolution of Asparagus L. (Asparagaceae): Out-of-South-Africa and multiple origins of sexual dimorphism. Mol Phylogenet Evol 92: 25-44.
  • Ozenda P (2004). Flore et végétation du Sahara. Paris, France: Centre National de la Recherche Scientifique (in French).
  • Quézel P, Santa S (1962). Nouvelle Flore de l’Algérie et des Régions Désertiques Méridionales. Paris, France: Centre National de la Recherche Scientifique (in French).
  • Ramos-Martinez A (1989). Aportaciones al conocimieto cariologico del género Asparagus L. (Liliaceae) en las Islas Canarias. Bot Macar 18: 3-14 (in Spanish).
  • Regalado JJ, Moreno R, Castro P, Carmona Martin E, Rodriguez R, Pedrol J, Larraňaga N, Guillén R, Gil G, Encina L (2016).
  • Asparagus macrorrhizus Pedrol, Regalado et López-Encina, an endemic species from Spain in extreme extinction risk, is a valuable genetic resource for asparagus breeding. Genet Resour Crop Ev (in press).
  • Romero Zarco C (1986). A new method for estimating karyotype asymmetry. Taxon 35: 526-530.
  • Rudall PJ, Engleman EM, Hanson L, Chase MW (1998). Embryology, cytology and systematics of Hemiphylacus, Asparagus and Anemarrhena (Asparagales). Plant Syst Evol 211: 181-199.
  • Schnitzler A, Arnold C (2010). Contribution of vines to forest biodiversity in the Mediterranean basin. Ecologia Mediterranea 36: 7-23.
  • Sheidai M (2001). Notes on the occurrence of unreduced meiocytes in some species of Asparagus L. Nucleus 44: 36-41.
  • Sheidai M, Inamdar AC (1992). Polyploidy in the genus Asparagus L. Nucleus 35: 93-97.
  • Sheidai M, Inamdar AC (1997). Cytomorphology of Asparagus taxa using multivariate statistical analysis. Nucleus 40: 7-12.
  • Stajner N, Bohanec B, Javornik B (2002). Genetic variability of economically important Asparagus species as revealed by genome size analysis and rDNA ITS polymorphisms. Plant Sci 162: 931-937.
  • Tamanyan KG, Pogosyan AI (1979). Cytotaxonomic study of Caucasian species of Asparagus L. (Liliaceae). Bot Zhurn 64: 398-403.
  • Urbani M, Becca G, Ledda MG (2007). Notes on systematics and chorology of Asparagus L. (Asparagaceae) in Sardinia (Italy). Bocconea 21: 267-271.
  • Valdés B (1979). Revision del genero Asparagus (Liliaceae) en Macaronesia. Lagascalia 9: 65-107 (in Spanish).
  • Valdés B (1980). Asparagus L. In: Tutin TG, Heywood VH, Burges NA, Valentine D, editors. Flora Europaea, Vol. 5. Cambridge, UK: Cambridge University Press, pp. 71-73.
  • Vernet P (1971). La proportion des sexes chez Asparagus acutifolius L. B Soc Bot Fr 118: 345-358 (in French).