Embryological and cytochemical features of Scilla autumnalis L.

Nucellar epidermal cells in the micropylar region of Scilla autumnalis L. differentiate into a nucellar cap. It secretes a PAS-positive exudate filling the micropyle. A group of cells at the chalazal end of the nucellus forms a hypostase. Close to the antipodals, the hypostase cells contain abundant starch grains, suggesting a function as a storage tissue. Another ovular structure is the obturator. It secretes an exudate that stains deeply with PAS reaction, and it takes a role in directing the growth of pollen tubes toward the micropyle. Cytochemical tests in the mature embryo sac indicate the presence of high amounts of proteins, polysaccharides, and lipids in the cytoplasm of the egg, synergids, antipodals, and central cell, appearing to be the site of intensive synthetic activity. The presence of a PAS-positive wall completely surrounding the egg cell and synergids is an unusual feature worthy of mention. Antipodals undergo polytenisation to reach ploidy levels of up to 128n. Another embryological feature of S. autumnalis is the development of an Onagrad type of embryo and a helobial type of endosperm.

Embryological and cytochemical features of Scilla autumnalis L.

Nucellar epidermal cells in the micropylar region of Scilla autumnalis L. differentiate into a nucellar cap. It secretes a PAS-positive exudate filling the micropyle. A group of cells at the chalazal end of the nucellus forms a hypostase. Close to the antipodals, the hypostase cells contain abundant starch grains, suggesting a function as a storage tissue. Another ovular structure is the obturator. It secretes an exudate that stains deeply with PAS reaction, and it takes a role in directing the growth of pollen tubes toward the micropyle. Cytochemical tests in the mature embryo sac indicate the presence of high amounts of proteins, polysaccharides, and lipids in the cytoplasm of the egg, synergids, antipodals, and central cell, appearing to be the site of intensive synthetic activity. The presence of a PAS-positive wall completely surrounding the egg cell and synergids is an unusual feature worthy of mention. Antipodals undergo polytenisation to reach ploidy levels of up to 128n. Another embryological feature of S. autumnalis is the development of an Onagrad type of embryo and a helobial type of endosperm.

___

  • Battaglia E (1958a). L’abolizione del tipo embriologico Scilla a la creazione dei nuovi tipi Endymion ed Allium. Caryologia 11: 247-252.
  • Battaglia E (1958b). Ricerche embriologico in Scilla autumnalis e Scilla obtusifolia (Liliaceae): nota preliminare. Nuovo Giorn Bot Ital 65: 397-398.
  • Battaglia E & Feeley E (1959). The embryo sac of Scilla prantensis Waldst. & Kit. (Liliaceae). Caryologia 11: 407-414.
  • Batygina TB & Shamrov II (1999). New approach to interpreting the ovular basic structures. Phytomorphology 49: 223-231.
  • Belyaeva NS (1983). Ultrastructure of chalazal and cells of ovule of Delphinium Embryogenesis in Ovulated Plants: Proceedings of the VII International Cytoembryological Symposium, pp. 189-194. Veda: Bratislava, Czechoslovakia.
  • Bhandari NN & Sachdeva A (1983). Some aspects of organization and histochemistry of the embryo sac of Scilla sibirica Sato. Protoplazma 116: 170-178.
  • Chehregani A, Malayeri B & Yousefi N (2009). Developmental stages of ovule and megagametophyte in Chenopodium botrys L. (Chenopodiaceae). Turk J Bot 33: 75-81.
  • De Boer R & Bouman F (1974). Integumentary studies in the Polycarpicae. III. Drimys winteri (Winteraceae). Acta Bot Neerl 23: 19-27.
  • Feder N & O’Brien TP (1968). Plant microtechnique: some principles and new methods. Am J Bot 55: 123-142.
  • Govindappa DA & Sheriff A (1951). Contribution to the life history of Scilla indica Baker. Journal of Mysore University (Sect. B) 12: 15-21.
  • Grassimova-Navashina EN & Batygina TB (1958). Fertilization in Scilla sibirica Andr. Bot Zhur 43: 959-988 (in Russian with English summary).
  • Haber RM & Semaan MT (2007). A new record from Lebanon: Scilla siberica Haw. subsp. armena (Grossh.) Mordak (Liliaceae). Turk J Bot 31: 263-264.
  • Hasitschka-Jenschke G (1962). Notizen über Endopolyploide. Kerne im Bereich der Samenanlage von Angiospermen. Österreichische Botanische Zeitschrift 109: 125-137.
  • Heslop-Harrison J (1979). Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann Bot 44: 1-47.
  • Heslop-Harrison J, Heslop-Harrison Y, Knox RB & Howlett BJ (1973). Pollen wall proteins: gametophytic and sporophytic fractions in the pollen walls of the Malvaceae. Ann Bot 37: 403-412.
  • İsmailoğlu I, Coşkun ZM, Keskin M & Ünal M (2006). Embryo and endosperm development in Allium peroninianum Aznav. Proceedings of the IV Balkan Botanical Congress, p. 128. Sofia, Bulgaria.
  • Jensen WA (1974). Reproduction in flowering plants. In: Robards AW (ed.) Dynamic Aspects of Plant Ultrastructure, pp. 481-503. London: McGraw-Hill Book Co.
  • Nagl W (1976). DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261: 614-615.
  • Natesh S & Rau MA (1984). The embryo. In: Johri BM (ed.) Embryology of Angiosperms, pp. 377-443. Berlin: Springer- Verlag.
  • Nath R (1993). Structural and functional aspects of ovule of Jussieua repends Linn. (Onagraceae) with emphasis on hypostase. Phytomorphology 43: 275-286.
  • Newcomb W (1973). The development of the embryo sac of sunflower Helianthus annuus before fertilization. Can J Bot 51: 863-878.
  • Sampson FB & Tucker SC (1978). Placentation in Exospermum stipiatum (Winteraceae). Bot Gaz 139: 215-222.
  • Schulz R & Jensen WA (1968). Capsella embryogenesis: the egg, zygote and young embryo. Am J Bot 55: 807-819.
  • Shamrov II (1990). The ovule of Gentiana cruciata (Gentianaceae): structural-functional aspects. Botanical Journal (St. Petersburg) 75: 1363-179.
  • Sulbha K (1954). Embryo sac of Scilla. Current Sci 23: 98-99.
  • Svoma E & Greilhuber J (1987). Studies on systematic embryology in Scilla (Hyacinthaceae). Plant Syst Evol 161: 169-181.
  • Tilton VR (1980a). The nucellar epidermis and micropyle of Ornithogalum caudatum (Liliaceae) with a review of these structures in other taxa. Can J Bot 58: 1872-1884.
  • Tilton VR (1980b). Hypostase development in Ornithogalum caudatum (Liliaceae) and notes on other types of modifications in the chalaza of angiosperm ovules. Can J Bot 58: 2059-2066.
  • Tilton VR & Horner HT (1980). Stigma, style and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process. Am J Bot 67: 1113-1131.
  • Tilton VR & Mogensen LH (1979). Ultrastructural aspects of the ovule of Agave parryi before fertilization. Phytomorphology 29: 338-350.
  • Tören J (1968). Mégasporogénèse et la formation du sac embronnaire chez Scilla amoena L. İstanbul Ünv Fen Fak Mecmuası 33: 1-10.
  • Tschermak-Woess E & Hasitschka G (1953). Veränderungen der Kernstruktur während der Endomitose, rhythmistiches Kernwachstum und verschiedenes Heterochromatin bei Angiospermen. Chromosoma 5: 574-614.
  • Ünal M & Vardar F (2006). Embryological analysis of Consolida regalis L. (Ranunculaceae). Acta Bio Crac 48/1: 27-32.
  • Ünal M, Yıldırım C & Ekal S (1997). The development of embryo sac and mechanism of polyploidization in the antipodals of Epimedium pubigerum DC. Bull Pol Acad Sci Biol Sci 45: 101- 105.
  • Van Went JL (1970). The ultrastructure of the fertilized embryo sac of Petunia. Acta Bot Neerl 19: 468-480.
  • Vijayaraghavan MR & Bhat U (1980). Synergids and antipodal cell in Ranunculus sceleratus Linn.– a histochemical approach. Indian National Sci Acad B46: 674-680.
  • Vijavaraghavan MR & Prabhaker K (1984). The endosperm. In: Johri BM (ed.) Embryology of Angiosperms, pp. 319-376. Berlin: Springer-Verlag.
  • Yakar-Olgun, N (1960). Bitki Mikroskopisi Kılavuz Kitabı. İstanbul: İstanbul Üniversitesi Yayınları.