Applications of CRISPR/Cas9-based genome editing in the plant biology
Applications of CRISPR/Cas9-based genome editing in the plant biology
Clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR/Cas) is an acquired immune system found in bacteria and archaea that can specifically silence or degrade a foreign single or double strand nucleic acid to protect it from infection. In recent years, the CRISPR/Cas9 system has rapidly been evolved into a genome editing technology, in which the Cas9 endonuclease can be targeted to specific DNA sequences by guide RNAs (gRNAs) that are easily programmable. Due to simplicity, specificity and high efficiency, CRISPR/Cas9 is gradually replacing other gene editing technologies and has been implemented in basic and applied plant sciences to boost yield, regulate metabolic process, and increase stress resistance in different varieties. In current review, we introduced its application scope in scientific research and practical application. We summarized the procedure of target plant generation by CRISPR/Cas9 method. We mainly reviewed the applications of CRISPR/Cas9 and its recent advances in model plants and other crop plants, attempting to provide a related general information to researchers. Further, we also included the inadequacies and concerns of CRISPR/Cas9 that have emerged so far.
___
- Ali Z, Eid A, Ali S, Mahfouz MM (2018). Pea early-browning virusmediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Research 244: 333-337. doi: 10.1016/j.virusres.2017.10.009
- Andersson M, Turesson H, Nicolia A, Falt AS, Samuelsson M et al. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports 36 (1): 117-128. doi: 10.1007/s00299-016-2062-3
- Bao A, Burritt DJ, Chen H, Zhou X, Cao D et al. (2019). The CRISPR/Cas9 system and its applications in crop genome editing. Critical Reviews in Biotechnology 39 (3): 321-336. doi: 10.1080/07388551.2018.1554621
- Bao A, Tran L-SP, Cao D (2020). CRISPR/Cas9-based gene editing in soybean. In: Jain M, Garg R (editors). Legume Genomics: Methods and Protocols. New York, NY, USA: Springer US, pp. 349-364.
- Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9 (1): 39. doi: 10.1186/1746-4811-9-39
- Bortesi L, Fischer R (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33 (1): 41-52. doi: 10.1016/j.biotechadv.2014.12.006
- Braatz J, Harloff H-J, Mascher M, Stein N, Himmelbach A et al. (2017). CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiology 174 (2):935-942. 527 doi:10.1104/pp.17.00426
- Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR530 associated system. Plant Physiology 166 (3):1292-1297. doi:10.1104/pp.114.247577
- Bull SE, Seung D, Chanez C, Mehta D, Kuon J-E et al. (2018). Accelerated ex situ breeding of GBSS- and PTST1-edited cassava for modified starch. Science Advances 4 (9): eaat6086. doi: 10.1126/sciadv.aat6086
- Butler NM, Atkins PA, Voytas DF, Douches DS (2015). Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) Using the CRISPR/Cas system. PLoS one 10 (12):e0144591. doi:10.1371/journal.pone.0144591
- Cai L, Fisher AL, Huang H, Xie Z (2016). CRISPR-mediated genome editing and human diseases. Genes & Diseases 3 (4): 244-251. doi: 10.1016/j.gendis.2016.07.003
- Cai Y, Wang L, Chen L, Wu T, Liu L et al. (2020). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnology Journal 18 (1): 298-309. doi: 10.1111/pbi.13199
- Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17 (7): 1140-1153. doi: 10.1111/mpp.12375
- Char SN, Wei J, Mu Q, Li X, Zhang ZJ et al. (2020). An Agrobacteriumdelivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnology Journal 18 (2): 319-321. doi: 10.1111/pbi.13229
- Charrier A, Vergne E, Dousset N, Richer A, Petiteau A et al. (2019). Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science 10: 40. doi: 10.3389/fpls.2019.00040
- Chen H, Zeng Y, Yang Y, Huang L, Tang B et al. (2020). Allele-aware chromosome-level genome assembly and efficient transgenefree genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11 (1): 2494. doi: 10.1038/s41467- 020-16338-x
- Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology 70: 667-697. doi: 10.1146/ annurev-arplant-050718-100049
- Cong L, Ran FA, Cox D, Lin S, Barretto R et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339 (6121): 819-823. doi: 10.1126/science.1231143
- Curtin SJ (2018). Editing the Medicago truncatula genome: targeted mutagenesis using the CRISPR-Cas9 reagent. In: Cañas LA, Beltrán JP (editors). Functional Genomics in Medicago truncatula: Methods and Protocols. New York, NY, USA: Springer New York, pp. 161-174.
- Do PT, Nguyen CX, Bui HT, Tran LTN, Stacey G et al. (2019). Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and alpha-linolenic acid phenotype in soybean. BMC Plant Biology 19 (1): 311. doi: 10.1186/s12870-019-1906-8
- Dong OX, Yu S, Jain R, Zhang N, Duong PQ et al. (2020). Markerfree carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nature Communications 11 (1):1 178. doi: 10.1038/s41467-020-14981-y
- Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D et al. (2019). Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Frontiers in Plant Science 10: 376. doi: 10.3389/fpls.2019.00376
- Fan D, Liu T, Li C, Jiao B, Li S et al. (2015). Efficient CRISPR/Cas9- mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5 (1): 12217. doi: 10.1038/srep12217
- Feng Z, Zhang Z, Hua K, Gao X, Mao Y et al. (2018). A highly efficient cell division-specific CRISPR/Cas9 system generates homozygous mutants for multiple genes in Arabidopsis. International Journal of Molecular Sciences 19 (12): 3925. doi: 10.3390/ijms19123925
- Gao R, Feyissa BA, Croft M, Hannoufa A (2018). Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247 (4): 1043-1050. doi: 10.1007/s00425-018-2866-1
- Gao X, Chen J, Dai X, Zhang D, Zhao Y (2016). An effective strategy for reliably isolating heritable and Cas9-Free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiology 171 (3): 1794-1800. doi: 10.1104/pp.16.00663
- Gentzel IN, Park CH, Bellizzi M, Xiao G, Gadhave KR et al. (2020). A CRISPR/dCas9 toolkit for functional analysis of maize genes. Plant Methods 16 (1): 133. doi: 10.1186/s13007-020-00675-5
- Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L et al. (2019). Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17 (2): 421-434. doi: 10.1111/pbi.12987
- Hahn F, Mantegazza O, Greiner A, Hegemann P, Eisenhut M et al. (2017). An efficient visual screen for CRISPR/Cas9 activity in Arabidopsis thaliana. Frontiers in Plant Science 8: 39. doi: 10.3389/fpls.2017.00039
- Hsu MN, Chang YH, Truong VA, Lai PL, Nguyen TKN et al. (2019). CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances 37 (8): 107447. doi: 10.1016/j.biotechadv.2019.107447
- Hu B, Li D, Liu X, Qi J, Gao D et al. (2017). Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Molecular Plant 10 (12): 1575-1578. doi: 10.1016/j.molp.2017.09.005
- Hua K, Tao X, Yuan F, Wang D, Zhu J-K (2018). Precise A·T to G·C base editing in the rice genome. Molecular Plant 11 (4): 627- 630. doi: 10.1016/j.molp.2018.02.007
- Huang L, Li Q, Zhang C, Chu R, Gu Z et al. (2020). Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal 18 (11): 2164-2166. doi:10.1111/ pbi.13391
- Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ et al. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology 31 (3): 227-229. doi: 10.1038/ nbt.2501
- Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology 169 (12): 5429-5433. doi: 10.1128/jb.169.12.5429-5433.1987
- Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology 15 (1): 16. doi: 10.1186/s12896-015-0131-2
- Janga MR, Pandeya D, Campbell LM, Konganti K, Villafuerte ST et al. (2019). Genes regulating gland development in the cotton plant. Plant Biotechnology Journal 17 (6): 1142-1153. doi: 10.1111/pbi.13044
- Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L (2019). CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking beta-1,2-xylose and core alpha1,3-fucose. Plant Biotechnology Journal 17 (2): 350-361. doi: 10.1111/pbi.12981
- Ji J, Zhang C, Sun Z, Wang L, Duanmu D et al. (2019). Genome editing in Cowpea Vigna unguiculata using CRISPR-Cas9. International Journal of Molecular Sciences 20 (10): 2471. doi: 10.3390/ijms20102471
- Jia H, Zhang Y, Orbović V, Xu J, White FF et al. (2017). Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15 (7): 817-823. doi: 10.1111/pbi.12677
- Jiang F, Doudna JA (2017). CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics 46: 505-529. doi: 10.1146/ annurev-biophys-062215-010822
- Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013a). RNAguided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology 31 (3): 233-239. doi: 10.1038/ nbt.2508
- Jiang W, Zhou H, Bi H, Fromm M, Yang B et al. (2013b). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research 41 (20): e188-e188. doi: 10.1093/nar/ gkt780
- Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB et al. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal 15 (5): 648-657. doi: 10.1111/pbi.12663
- Jinek M, East A, Cheng A, Lin S, Ma E et al. (2013). RNA-programmed genome editing in human cells. Elife 2: e00471. doi: 10.7554/ eLife.00471
- Kaminski R, Bella R, Yin C, Otte J, Ferrante P et al. (2016). Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Therapy 23 (8-9): 690-695. doi: 10.1038/gt.2016.41
- Kaur N, Alok A, Shivani, Kaur N, Pandey P et al. (2018). CRISPR/ Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics 18 (1): 89-99. doi: 10.1007/s10142-017-0577-5
- Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019). Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnology Journal 17 (6): 1004-1006. doi: 10.1111/pbi.13077
- Kishi-Kaboshi M, Aida R, Sasaki K (2017). Generation of geneedited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology 58 (2): 216- 226. doi: 10.1093/pcp/pcw222
- Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018). Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Reports 37 (4): 575-586. doi: 10.1007/s00299- 018-2252-2
- Koonin EV, Makarova KS, Zhang F (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37: 67-78. doi: 10.1016/j.mib.2017.05.008
- Kui L, Chen H, Zhang W, He S, Xiong Z et al. (2017). Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Frontiers in Plant Science 7: 2036-2036. doi: 10.3389/fpls.2016.02036
- Lawrenson T, Hundleby P, Harwood W (2019). Creating targeted gene knockouts in Brassica oleracea using CRISPR/Cas9. In: Qi Y (editor). Plant Genome Editing with CRISPR Systems: Methods and Protocols. New York, NY, USA: Springer New York, pp. 155-170.
- Li A, Jia S, Yobi A, Ge Z, Sato SJ et al. (2018). Editing of an alphakafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiology 177 (4): 1425-1438. doi: 10.1104/ pp.18.00200
- Li C, Li W, Zhou Z, Chen H, Xie C et al. (2020). A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnology Journal 18 (2): 313-315. doi: 10.1111/pbi.13217
- Li C, Nguyen V, Liu J, Fu W, Chen C et al. (2019a). Mutagenesis of seed storage protein genes in Soybean using CRISPR/Cas9. BMC Research Notes 12 (1): 176. doi: 10.1186/s13104-019- 4207-2
- Li J, Meng X, Zong Y, Chen K, Zhang H et al. (2016). Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants 2 (10): 16139. doi: 10.1038/ nplants.2016.139
- Li JF, Norville JE, Aach J, McCormack M, Zhang D et al. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31 (8): 688-691. doi: 10.1038/nbt.2654
- Li JF, Zhang D, Sheen J (2014). Cas9-based genome editing in Arabidopsis and tobacco. Methods Enzymol 546: 459-472. doi: 10.1016/b978-0-12-801185-0.00022-2
- Li S, Shen L, Hu P, Liu Q, Zhu X et al. (2019b). Developing diseaseresistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology 61 (12): 1201- 1205. doi: 10.1111/jipb.12774
- Li Z, Liu Z-B, Xing A, Moon BP, Koellhoffer JP et al. (2015). Cas9- Guide RNA Directed Genome Editing in Soybean. Plant Physiology 169 (2): 960. doi: 10.1104/pp.15.00783
- Liang Z, Chen K, Li T, Zhang Y, Wang Y et al. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications 8 (1): 14261. doi: 10.1038/ncomms14261
- Liang Z, Chen K, Zhang Y, Liu J, Yin K et al. (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols 13 (3): 413- 430. doi: 10.1038/nprot.2017.145
- Liang Z, Zhang K, Chen K, Gao C (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics 41 (2): 63-68. doi: 10.1016/j. jgg.2013.12.001
- Liu H, Wang K, Tang H, Gong Q, Du L et al. (2020). CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. Journal of Genetics and Genomics 47 (9): 563-575. doi: 10.1016/j.jgg.2020.08.004
- Liu J, Gunapati S, Mihelich NT, Stec AO, Michno J-M et al. (2019). Genome Editing in Soybean with CRISPR/Cas9. In: Qi Y (editor). Plant Genome Editing with CRISPR Systems: Methods and Protocols. New York, NY, USA: Springer New York, pp. 217- 234.
- Ma Y, Zhang L, Huang X (2014). Genome modification by CRISPR/ Cas9. The FEBS Journal 281 (23): 5186-5193. doi:10.1111/ febs.13110
- Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. (2013). RNA-guided human genome engineering via Cas9. Science 339 (6121): 823- 826. doi: 10.1126/science.1232033
- Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S et al. (2016). DNAfree genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7: 1904-1904. doi: 10.3389/fpls.2016.01904
- Manghwar H, Lindsey K, Zhang X, Jin S (2019). CRISPR/Cas system: recent advances and future prospects for genome editing. Trends in Plant Science 24 (12): 1102-1125. doi: 10.1016/j. tplants.2019.09.006
- Mao Y, Zhang H, Xu N, Zhang B, Gou F et al. (2013). Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant 6 (6): 2008-2011. doi: 10.1093/mp/sst121
- Matsuo K, Atsumi G (2019). CRISPR/Cas9-mediated knockout of the RDR6 gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins. Planta 250 (2): 463-473. doi: 10.1007/s00425-019-03180-9
- Meng Y, Hou Y, Wang H, Ji R, Liu B et al. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports 36 (2): 371-374. doi: 10.1007/ s00299-016-2069-9
- Mercx S, Tollet J, Magy B, Navarre C, Boutry M (2016). Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Frontiers in Plant Science 7: 40. doi: 10.3389/ fpls.2016.00040
- Michno J-M, Wang X, Liu J, Curtin SJ, Kono TJY et al. (2015). CRISPR/ Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops & Food 6 (4): 243-252. doi: 10.1080/21645698.2015.1106063
- Miki D, Zhang W, Zeng W, Feng Z, Zhu JK (2018). CRISPR/Cas9- mediated gene targeting in Arabidopsis using sequential transformation. Nature Communications 9 (1): 1967. doi: 10.1038/s41467-018-04416-0
- Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R (2018). DNAfree genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Frontiers in Plant Science 9: 1594. doi: 10.3389/fpls.2018.01594
- Nadakuduti SS, Starker CG, Voytas DF, Buell CR, Douches DS (2019). Genome editing in potato with CRISPR/Cas9. In: Qi Y (editor). Plant Genome Editing with CRISPR Systems: Methods and Protocols. New York, NY, USA: Springer New York, pp. 183-201.
- Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31 (8): 691-693. doi: 10.1038/nbt.2655
- Nishitani C, Hirai N, Komori S, Wada M, Okada K et al. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6 (1): 31481. doi: 10.1038/srep31481
- Okada A, Arndell T, Borisjuk N, Sharma N, Watson-Haigh NS et al. (2019). CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal 17 (10): 1905-1913. doi: 10.1111/pbi.13106
- Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M et al. (2018). CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiology and Biochemistry 131: 63-69. doi: 10.1016/j.plaphy.2018.04.025
- Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K et al. (2018). CRISPR–Cas9-mediated genome editing in apple and grapevine. Nature Protocols 13 (12): 2844-2863. doi: 10.1038/ s41596-018-0067-9
- Ren C, Liu X, Zhang Z, Wang Y, Duan W et al. (2016). CRISPR/ Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6 (1): 32289. doi: 10.1038/ srep32289
- Rybicki EP (2019). CRISPR–Cas9 strikes out in cassava. Nature Biotechnology 37 (7): 727-728. doi: 10.1038/s41587-019-0169- 0
- Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C et al. (2018). Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal 16 (4): 902-910. doi: 10.1111/pbi.12837
- Schachtsiek J, Stehle F (2019). Nicotine-free, nontransgenic tobacco (Nicotiana tabacum l.) edited by CRISPR-Cas9. Plant Biotechnology Journal 17 (12):2228-2230. doi:10.1111/ pbi.13193
- Shalem O, Sanjana NE, Zhang F (2015). High-throughput functional genomics using CRISPR-Cas9. Nature Reviews Genetics 16 (5): 299-311. doi: 10.1038/nrg3899
- Shan Q, Wang Y, Li J, Zhang Y, Chen K et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31 (8): 686-688. doi: 10.1038/nbt.2650
- Shao X, Wu S, Dou T, Zhu H, Hu C et al. (2020). Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnology Journal 18 (1): 17-19. doi: 10.1111/pbi.13216
- Shi J, Gao H, Wang H, Lafitte HR, Archibald RL et al. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15 (2): 207-216. doi: 10.1111/pbi.12603
- Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T et al. (2017). Targeted base editing in rice and tomato using a CRISPRCas9 cytidine deaminase fusion. Nature Biotechnology 35 (5): 441-443. doi: 10.1038/nbt.3833
- Singh A, Chakraborty D, Maiti S (2016). CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chemical Society Reviews 45 (24): 6666-6684. doi: 10.1039/c6cs00197a
- Singh M, Kumar M, Albertsen MC, Young JK, Cigan AM (2018). Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Molecular Biology 97 (4): 371-383. doi: 10.1007/s11103-018-0749-2
- Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH et al. (2016). Site-directed mutagenesis in Petunia x hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports 35 (7): 1535-1544. doi: 10.1007/s00299-016-1937-7
- Sun X, Hu Z, Chen R, Jiang Q, Song G et al. (2015). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports 5 (1): 10342. doi: 10.1038/srep10342
- Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016). Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications 7 (1): 13274. doi: 10.1038/ncomms13274
- Tang Y, Abdelrahman M, Li J, Wang F, Ji Z et al. (2021). CRISPR/ Cas9 induces exon skipping that facilitates development of fragrant rice. Plant Biotechnology Journal 19 (4): 642-644. doi: 10.1111/pbi.13514
- Tian S, Jiang L, Gao Q, Zhang J, Zong M et al. (2017). Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Reports 36 (3): 399-406. doi: 10.1007/s00299-016-2089-5
- Tsutsui H, Higashiyama T (2017). pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant and Cell Physiology 58 (1): 46-56. doi: 10.1093/pcp/pcw191
- Upadhyay SK, Kumar J, Alok A, Tuli R (2013). RNA-guided genome editing for target gene mutations in wheat. G3: Genes|Genomes|Genetics 3 (12): 2233-2238. doi: 10.1534/ g3.113.008847
- Wang F, Qi LS (2016). Applications of CRISPR genome engineering in cell biology. Trends in Cell Biology 26 (11): 875-888. doi: 10.1016/j.tcb.2016.08.004
- Wang H, Wu Y, Zhang Y, Yang J, Fan W et al. (2019). CRISPR/Cas9- based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea batatas) for the improvement of starch quality. International Journal of Molecular Sciences 20 (19):4702. doi:10.3390/ijms20194702
- Wang HX, Li M, Lee CM, Chakraborty S, Kim HW et al. (2017). CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chemical Reviews 117 (15): 9874-9906. doi: 10.1021/acs. chemrev.6b00799
- Wang P, Zhang J, Sun L, Ma Y, Xu J et al. (2018). High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnology Journal 16 (1): 137-150. doi: 10.1111/pbi.12755
- Wang S, Zhang S, Wang W, Xiong X, Meng F et al. (2015a). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports 34 (9): 1473-1476. doi: 10.1007/s00299-015- 1816-7
- Wang ZP, Xing HL, Dong L, Zhang HY, Han CY et al. (2015b). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16: 144. doi: 10.1186/s13059-015-0715-0
- Wolabu TW, Cong L, Park JJ, Bao Q, Chen M et al. (2020). Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Frontiers in Plant Science 11: 1063. doi: 10.3389/fpls.2020.01063
- Xu ZS, Feng K, Xiong AS (2019). CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Molecular Biotechnology 61 (3): 191-199. doi: 10.1007/s12033- 018-00150-6
- Yamamoto A, Ishida T, Yoshimura M, Kimura Y, Sawa S (2019). Developing heritable mutations in Arabidopsis thaliana using a modified CRISPR/Cas9 toolkit comprising PAM-altered Cas9 variants and gRNAs. Plant and Cell Physiology 60 (10): 2255- 2262. doi: 10.1093/pcp/pcz118
- Ye M, Peng Z, Tang D, Yang Z, Li D et al. (2018). Generation of selfcompatible diploid potato by knockout of S-RNase. Nature Plants 4 (9): 651-654. doi: 10.1038/s41477-018-0218-6
- Zafar K, Khan MZ, Amin I, Mukhtar Z, Yasmin S et al. (2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science 11 (575). doi: 10.3389/fpls.2020.00575
- Zhan T, Rindtorff N, Betge J, Ebert MP, Boutros M (2019). CRISPR/ Cas9 for cancer research and therapy. Seminars in Cancer Biology 55: 106-119. doi: 10.1016/j.semcancer.2018.04.001
- Zhang B, Yang X, Yang C, Li M, Guo Y (2016a). Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia. Scientific Reports 6 (1): 20315. doi: 10.1038/srep20315
- Zhang Y, Liang Z, Zong Y, Wang Y, Liu J et al. (2016b). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications 7 (1): 12617. doi: 10.1038/ncomms12617
- Zhong Y, Liu C, Qi X, Jiao Y, Wang D et al. (2019). Mutation of ZmDMP enhances haploid induction in maize. Nature Plants 5 (6): 575-580. doi: 10.1038/s41477-019-0443-7
- Zhou H, Bai S, Wang N, Sun X, Zhang Y et al. (2020a). CRISPR/Cas9- mediated mutagenesis of mdcngc2 in apple callus and VIGSmediated silencing of mdcngc2 in fruits improve resistance to Botryosphaeria dothidea. Frontiers in Plant Science 11 (1640). doi: 10.3389/fpls.2020.575477
- Zhou J, Li D, Wang G, Wang F, Kunjal M et al. (2020b). Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. Journal of Integrative Plant Biology 62 (3): 269-286. doi: 10.1111/jipb.12793
- Zhou J, Wang G, Liu Z (2018). Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnology Journal 16 (11): 1868-1877. doi: 10.1111/ pbi.12922
- Zhou J, Yuan M, Zhao Y, Quan Q, Yu D et al. (2021). Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnology Journal: 1-13. doi: 10.1111/pbi.13544