Dehydrins: an overview of current approaches and advancement

Since plants are exposed to diverse environmental stresses in their natural area, numerous reviews have demonstrated many aspects of dehydrins (DHNs), including structural and functional dynamics, and multiple roles such as membrane protection, cryoprotection of enzymes, chaperone feature, and protection from reactive oxygen species. In this review, we have focused on new information, and other promising and emerging topics of DHNs in plants. This review outlines particularly the potential regulatory mechanisms of DHNs associated with stress tolerance and the role of DHNs in morphological responses of the plants exposed to environmental stresses. Besides the discussion of the signaling pathways involved in DHN expression under abiotic stress, novel aspects about the effect of DHN transcript or the protein accumulation on the tolerance to the stress factors are also presented in transgenic and non-transgenic plants. We hope that this review will help us better understand the role of these impressive proteins in plant stress response mechanisms.

___

  • Abedini R, 2017, J PLANT RES, V130, P747, DOI 10.1007/s10265-017-0941-5
  • Allagulova CR, 2003, BIOCHEMISTRY-MOSCOW+, V68, P945, DOI 10.1023/A:1026077825584
  • An YQ, 2011, BMC PLANT BIOL, V11, DOI 10.1186/1471-2229-11-105
  • Bao F, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00151
  • Battaglia M, 2008, PLANT PHYSIOL, V148, P6, DOI 10.1104/pp.108.120725
  • Bertioli DJ, 2016, NAT GENET, V48, P438, DOI 10.1038/ng.3517
  • Bhattarai T, 2005, PHYSIOL PLANTARUM, V123, P452, DOI 10.1111/j.1399-3054.2005.00478.x
  • Campbell SA, 1997, NEW PHYTOL, V137, P61, DOI 10.1046/j.1469-8137.1997.00831.x
  • Cao YX, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00470
  • Chiappetta A, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00392
  • Close TJ, 1996, PHYSIOL PLANTARUM, V97, P795, DOI 10.1111/j.1399-3054.1996.tb00546.x
  • Duque AS, 2013, ABIOTIC STRESS - PLANT RESPONSES AND APPLICATIONS IN AGRICULTURE, P49, DOI 10.5772/52779
  • Eriksson S, 2016, PLANT PHYSIOL, V171, P932, DOI 10.1104/pp.15.01531
  • Eriksson SK, 2011, PLANT CELL, V23, P2391, DOI 10.1105/tpc.111.085183
  • Falavigna VD, 2019, PLANT CELL REP, V38, P1099, DOI 10.1007/s00299-019-02428-8
  • GODAY A, 1994, PLANT CELL, V6, P351, DOI 10.1105/tpc.6.3.351
  • Graether SP, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00576
  • Guo X, 2019, PLOS ONE, V14 .
  • Gupta A, 2019, J BIOL CHEM, V294, P6468, DOI 10.1074/jbc.RA118.007163
  • Halder T, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00136
  • Halder T, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00918
  • Halder T, 2016, PROTOPLASMA, V253, P1475, DOI 10.1007/s00709-015-0901-7
  • Hassan NM, 2015, J ADV RES, V6, P179, DOI 10.1016/j.jare.2013.11.004
  • Hernandez-Sanchez I.E., 2017, SCI REP, V7, P1
  • Jing H, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161073
  • Kadioglu A, 2014, 3 INT MOL BIOL BIOT, P203
  • Kadioglu A, 2011, PLANT GROWTH REGUL, V64, P27, DOI 10.1007/s10725-010-9532-3
  • Kadioglu A, 2012, PLANT SCI, V182, P42, DOI 10.1016/j.plantsci.2011.01.013
  • Koag MC, 2009, PLANT PHYSIOL, V150, P1503, DOI 10.1104/pp.109.136697
  • Kooijman EE, 2007, J BIOL CHEM, V282, P11356, DOI 10.1074/jbc.M609737200
  • Kosova K, 2019, HDB PLANT CROP STRES, P175
  • Kosova K, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.00122
  • Kovacs D, 2008, PLANT PHYSIOL, V147, P381, DOI 10.1104/pp.108.118208
  • Li BQ, 2012, AMINO ACIDS, V43, P2469, DOI 10.1007/s00726-012-1327-6
  • Li QL, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01316
  • Li X, 2020, AUTOPHAGY, V16, P862, DOI 10.1080/15548627.2019.1643656
  • Li Z.Q, 2015, PLOS ONE, V10 .
  • Liang D, 2012, MOL BIOL REP, V39, P10759, DOI 10.1007/s11033-012-1968-2
  • Lin CH, 2012, PLANT CELL PHYSIOL, V53, P930, DOI 10.1093/pcp/pcs040
  • Liu CC, 2012, PLANT MOL BIOL REP, V30, P848, DOI 10.1007/s11105-011-0395-1
  • Liu H, 2019, PLANT SIGNAL BEHAV, DOI 10.1080/15592324.2019.1678370
  • Liu H, 2015, PLANT SCI, V231, P198, DOI 10.1016/j.plantsci.2014.12.006
  • Liu Y, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01018
  • Lv AM, 2018, BMC PLANT BIOL, V18, DOI 10.1186/s12870-018-1511-2
  • Lv AM, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00748
  • Malik AA, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00709
  • Maryan KE, 2019, GENE EXPR PATTERNS, V31, P7, DOI 10.1016/j.gep.2018.10.002
  • Munoz-Mayor A, 2012, J PLANT PHYSIOL, V169, P459, DOI 10.1016/j.jplph.2011.11.018
  • Nolan TM, 2017, DEV CELL, V41, P33, DOI 10.1016/j.devcel.2017.03.013
  • Nylander M, 2001, PLANT MOL BIOL, V45, P263, DOI 10.1023/A:1006469128280
  • Peleg Z, 2011, CURR OPIN PLANT BIOL, V14, P290, DOI 10.1016/j.pbi.2011.02.001
  • Richard S, 2000, PLANT MOL BIOL, V43, P1, DOI 10.1023/A:1006453811911
  • Riley AC, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0211813
  • Saavedra L, 2006, PLANT J, V45, P237, DOI 10.1111/j.1365-313X.2005.02603.x
  • Santner A, 2009, NATURE, V459, P1071, DOI 10.1038/nature08122
  • Shekhawat UKS, 2011, PLANTA, V234, P915, DOI 10.1007/s00425-011-1455-3
  • Shen Y, 2004, PLANT SCI, V166, P1167, DOI 10.1016/j.plantsci.2003.12.025
  • Sun X, 2009, RUSS J PLANT PHYSL+, V56, P348, DOI 10.1134/S1021443709030078
  • Sun XL, 2013, PLANT CELL, V25, P38, DOI 10.1105/tpc.112.106062
  • Sun X, 2006, Z NATURFORSCH C, V61, P245 .
  • Szego A, 2019, J HORTIC SCI BIOTECH, V94, P726, DOI 10.1080/14620316.2019.1628665
  • Tiwari P, 2019, ENVIRON EXP BOT, V158, P136, DOI 10.1016/j.envexpbot.2018.10.031
  • Tommasini L, 2008, FUNCT INTEGR GENOMIC, V8, P387, DOI 10.1007/s10142-008-0081-z
  • Uversky VN, 2016, J BIOL CHEM, V291, P6681, DOI 10.1074/jbc.R115.685859
  • Verma G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176399
  • Vlad F, 2008, PLANT J, V55, P104, DOI 10.1111/j.1365-313X.2008.03488.x
  • Wang YZ, 2014, PLANT SCI, V214, P113, DOI 10.1016/j.plantsci.2013.10.005
  • Wisniewski M, 1999, PHYSIOL PLANTARUM, V105, P600, DOI 10.1034/j.1399-3054.1999.105402.x
  • Xie C, 2012, NEW PHYTOL, V195, P124, DOI 10.1111/j.1469-8137.2012.04136.x
  • Xiong L, 2002, PLANT CELL ENVIRON, V25, P131, DOI 10.1046/j.1365-3040.2002.00782.x
  • Yamaguchi-Shinozaki K, 2005, TRENDS PLANT SCI, V10, P88, DOI 10.1016/j.tplants.2004.12.012
  • Yang WB, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00406
  • Yang YZ, 2012, BMC PLANT BIOL, V12, DOI 10.1186/1471-2229-12-140
  • Yu ZY, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19113420
  • Zhang HF, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21010026
  • Zhang H, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01454
  • Zhang YX, 2006, MOL BIOTECHNOL, V32, P205, DOI 10.1385/MB:32:3:205
  • Zhou Y, 2018, ACTA PHYSIOL PLANT, V40, DOI 10.1007/s11738-018-2715-7
  • Zhou Y, 2017, AMB EXPRESS, V7, DOI 10.1186/s13568-016-0316-7
  • Zhu JK, 2001, TRENDS PLANT SCI, V6, P66, DOI 10.1016/S1360-1385(00)01838-0
  • Zhu WN, 2014, PLANT MOL BIOL REP, V32, P664, DOI 10.1007/s11105-013-0681-1
  • Mota APZ, 2019, FRONT PLANT SCI, V10, DOI 10.3389/fpls.2019.00497