Structural characterization of ITS2 and CBC species concept applications in the tribe Coluteocarpeae Brassicaceae

The taxonomic utility of internal transcribed spacer 2 ITS2 secondary structures in different plant groups, as well as in Brassicaceae, has been addressed by many studies. Although characterization and applications of ITS2 secondary structures for the members of main Brassicaceae lineages Lineages I, II, III, and expanded Lineage II have been studied, the utility of compensatory base change CBC species concept has not been the subject of any studies thus far. In the current study, the ITS2 secondary structures of 49 Coluteocarpeae expanded Lineage II specimens were investigated to determine relationships among the species. In addition to the utility of the CBC species concept, the availability of hemi-CBC and nonstructural substitutions NSTs , which are also used for generic and species delimitation, were tested and discussed. A maximum likelihood tree, based on the sequence-structural alignment of the 49 specimens, was constructed to test the different generic assumptions reported by different researchers in the literature. The structural analysis showed that the ITS2 secondary structures of all of the Coluteocarpeae members exhibited a 4-fingered hand model, which was common in the majority of the family members. No CBCs were observed, whereas hemi-CBCs and NSTs were common among the tribe members. Although hemi-CBCs and NSTs were useful for distinguishing most of the Coluteocarpeae species Noccaea aptera Velen. F.K. Mey., Noccaea aghrica P.H. Davis & Kit Tan M. Fırat & Özüdoğru, Noccaea fendleri A.Gray Holub subsp. glauca A. Nelson Al-Shehbaz & M. Koch, Noccaea griffithiana Boiss. F.K. Mey., Noccaea rubescens Schott & Kotschy ex Boiss. F.K. Mey., etc. , they were not effective for delimitating some problematic species, such as members of Thlaspiceras F.K. Mey. A phylogenetic tree based on the sequence-structural dataset of the ITS2 showed that generic delimitation of Al-Shehbaz was more acceptable due to the fact that Noccaea sensu Al-Shehbaz is monophyletic.

___

  • Ali T, Schmuker A, Runge F, Solovyeva I, Nigrelli L et al. (2016a). Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera. Taxon 65 (1): 79-98. doi: 10.12705/651.6
  • Ali T, Runge F, Dutbayev A, Schmuker A, Solovyeva I et al. (2016b). Microthlaspi erraticum (Jord.) T. Ali et Thines has a wide distribution, ranging from the Alps to the Tien Shan. Flora: Morphology, Distribution, Functional Ecology of Plants 225: 76-81. doi: 10.1016/j.flora.2016.09.008
  • Al-Shehbaz, IA (2014). A synopsis of the genus Noccaea (Coluteocarpeae, Brassicaceae). Harvard Papers in Botany: 19(1): 25-51. doi:10.3100/hpib.v19iss1.2014.n3
  • Al-Shehbaz IA (2012). A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61 (5): 931-954. doi: 10.1002/ tax.615002
  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006). Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Systematics and Evolution 259 (2-4): 89-120. doi: 10.1007/ s00606-006-0415-z
  • Ankenbrand MJ, Keller A, Wolf M, Schultz J, Förster F (2015). ITS2 database V: Twice as much. Molecular Biology and Evolution 32 (11): 3030-3032. doi: 10.1093/molbev/msv174
  • Artelari R (2002). Thlaspi. In: Strid A, Tan K (editors). Flora Helenica. Vol. 2. Ruggell: A. R. G. Gantner Verlag, pp. 253-261.
  • Aytaç Z, Nordt B, Parolly G (2006). A new species of Noccaea (Brassicaceae) from South Anatolia, Turkey. Botanical Journal of the Linnean Society 150(3): 409-416.
  • Bowman JL, Brüggemann H, Lee JY, Mummenhoff K. (1999). Evolutionary changes in floral structure within Lepidium L. (Brassicaceae). International Journal of Plant Sciences 160 (5): 917-929. doi: 10.1086/314194
  • Budak M, Güler M, Korkmaz EM, Örgen SH, Başıbüyük HH (2016). The characterization and taxonomic utility of ITS2 in Tenthredopsis Costa, 1859 (Tenthredinidae: Hymenoptera) with some new records from Turkey. Biochemical Systematics and Ecology 66: 76-85. doi: 10.1016/j.bse.2016.03.008
  • Coleman AW, Vacquier VD (2002). Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). Journal of Molecular Evolution 54 (2): 246-257. doi: 10.1007/s00239-001-0006-0
  • Coleman AW (2003). ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19 (7): 370-375. doi: 10.1016/S0168-9525 (03)00118-5
  • Coleman AW (2009). Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50 (1): 197-203. doi: 10.1016/j. ympev.2008.10.008
  • Couvreur TL, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA et al (2009). Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Molecular Biology and Evolution 27 (1): 55-71. doi: 10.1093/ molbev/msp202.
  • Darty K, Denise A, Ponty Y (2009). VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25 (15): 1974. doi: 10.1093/bioinformatics/btp250
  • De Candolle AP (1821). Mémoire sur la famille des Crucifères. Mémoires du Muséum 7: 169-252 (in French).
  • Doğan B, Ünal M, Özgökçe F, Martin E, Kaya A (2011). Phylogenetic relationships between Malcolmia, Strigosella, Zuvanda, and some closely related genera (Brassicaceae) from Turkey revealed by inter-simple sequence repeat amplification. Turkish Journal of Botany 35 (1): 17-23. doi: 10.3906/bot-1006-40
  • Dorofeyev VI (2004). System of family Cruciferae B. Juss. (Brassicaceae Burnett). Turczaninowia 7 (3): 43-52
  • Edger PP, Tang M, Bird KA, Mayfield DR, Conant G et al. (2014). Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (Mustards). Plos One 9 (7): e101341. doi: 10.1371/journal.pone.0101341
  • Fırat M, Özüdoğru B, Hacıoğlu BT, Bülbül AS, Al-Shehbaz IA et al (2014). Phylogenetic position and taxonomic assignment of Thlaspi aghricum PH Davis & K. Tan (Brassicaceae). Phytotaxa 178 (4): 287-297. doi: 10.11646/phytotaxa.178.4.2
  • Garcia da Silva T, Bock C, Sant’Anna CL, Bagatini IL, Wodniok S et al (2017). Selenastraceae (Sphaeropleales, Chlorophyceae): rbcL, 18S rDNA and ITS-2 secondary structure enlightens traditional taxonomy, with description of two new genera, Messastrum gen. nov. and Curvastrum gen. nov. Fottea 17 (1): 1-19. doi: 10.5507/fot.2016.010
  • German DA (2009). New data on the species composition and distribution of Mongolian mustards (Cruciferae). Botanicheskii Zhurnal, 94 (8): 1149-1158.
  • German DA (2017). What is Cochlearia venusta (Cruciferae). Phytotaxa 297 (3): 295-298. doi: 10.11646/phytotaxa.297.3.12
  • German DA, Friesen N, Neuffer B, Al-Shehbaz IA, Hurka H (2009). Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa. Plant Systematics and Evolution 283 (1-2): 33-56. doi: 10.1007/s00606-009-0213-5
  • German DA, Chen WL (2009). Notes on the family Brassicaceae in China. Journal of Systematics and Evolution 47 (3): 202-219. doi: 10.1111/j.1759-6831.2009.00022.x
  • Greuter W, Burdet HM, Long G (1986). Med-Checklist. Vol. 3. Conservatoire et Jarin botniques de la Ville de Genève. Greuter W, Raus T (1983). Med-Checklist notulae, 7. Willdenowia 13: 79-96.
  • Güzel Y, Özüdoğru B, Kayikci S, Özgişi K (2018). Noccaea ali-atahanii (Brassicaceae): A new species from southern Anatolia. Turkish Journal of Botany 42 (6): 780-789. doi: 10.3906/bot-1805-40
  • Karaismailoğlu MC, Erol O (2018). Seed structure and its taxonomic implications for genus Thlaspi sensu lato sections Nomisma, Thlaspi, and Pterotropis (Brassicaceae). Turkish Journal of Botany 42 (5): 591-609. doi: 10.3906/bot-1709-28
  • Karaismailoğlu MC, Erol O (2019). Pollen morphology of some taxa of Thlaspi L. sensu lato (Brassicaceae) from Turkey, and its taxonomical importance. Palynology 43(2): 244-254. doi: 10.1080/01916122.2018.1463571
  • Karpenko N, Martyniuk V, Tyshchenko O, Tarieiev A, Tekpinar A et al (2018). Resolving the position of Astragalus borysthenicus Klokov within the Astragalus L. species. Turkish Journal of Botany 42 (5): 623-635. doi: 10.3906/bot-1712-52
  • Keller A, Förster F, Müller T, Dandekar T, Schultz J et al (2010). Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biology Direct 5 (1): 4. doi: 10.1186/1745-6150-5-4
  • Khosravi A R, Mohsenzadeh S, Mummenhoff K (2009). Phylogenetic relationships of Old World Brassicaceae from Iran based on nuclear ribosomal DNA sequences. Biochemical Systematics and Ecology 37 (2): 106-115. doi: 10.1016/j.bse.2009.01.010
  • Koch M, Al-Shehbaz, IA (2004). Taxonomic and phylogenetic evaluation of the American “Thlaspi” Species: Identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Systematic Botany 29 (2): 375-384. doi: 10.1600/036364404774195566
  • Koch M, Al-Shehbaz IA, Mummenhoff K. (2003). Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Annals of the Missour Botanical Garden, 151-171. doi: 10.2307/3298580
  • Koetschan C, Hackl T, Müller T, Wolf M, Förster F et al (2012). ITS2 database IV: Interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Molecular Phylogenetics and Evolution 63 (3): 585-588. doi: 10.1016/j.ympev.2012.01.026
  • Larking MA, Blackshields G, Brown NP, Chenna R, McGettigan GA et al. (2007). ClustalW and ClustalX version 2. Bioinformatics 23 (21): 2947-2948. doi: 10.1093/bioinformatics/btm404
  • Mai JC, Coleman AW (1997). The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. Journal of Molecular Evolution 44 (3): 258- 271. doi: 10.1007/PL00006143
  • Mathews DH, Sabina J, Zuker M, Turner DH (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288(5): 911-940. doi: 10.1006/jmbi.1999.2700
  • Meyer FK (1973). Conspectus der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Feddes Repertorium Specierum Novarum Regni Vegetabilis 84: 449-469.
  • Meyer FK (1979). Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Feddes Repertorium Specierum Novarum Regni Vegetabilis 90: 129-154.
  • Meyer FK (2001). Kritische revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Spezieller Tiel, II. Thlaspi L. Haussknechtia 8: 3-42.
  • Morgan JA, Blair D (1998). Trematode and monogenean rRNA ITS2 secondary structures support a four-domain model. Journal of Molecular Evolution 47 (4): 406-419. doi: 10.1007/PL00006398 Müller T, Philippi N, Dandekar T, Schultz J, Wolf M (2007). Distinguishing species. RNA 13 (9): 1469-1472. doi: 10.1261/ rna.617107
  • Mullineux T, Hausner G (2009). Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium. Fungal Genetics and Biology 46 (11): 855-867. doi: 10.1016/j. fgb.2009.08.001
  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee JY et al (2004). Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. American Journal of Botany 91 (2): 254-261. doi: 10.3732/ajb.91.2.254
  • Mummenhoff K, Brüggemann H, Bowman JL (2001). Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). American Journal of Botany 88 (11): 2051-2063. doi: 10.2307/3558431
  • Mummenhoff K, Franzke A, Koch M (1997a). Molecular data reveal convergence in fruit characters used in the classification of Thlaspi sl (Brassicaceae. Botanical Journal of the Linnean Society 125 (3): 183-199. doi: 10.1111/j.1095-8339.1997. tb02253.x
  • Mummenhoff K, Franzke A, Koch M (1997b). Molecular phylogenetics of Thlaspi sl (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. Canadian Journal of Botany 75 (3): 469-482. doi: 10.1139/b97-051
  • Mummenhoff K, Hurka H (1995). Allopolyploid origin of Arabidopsis suecica (Fries) Norrlin: Evidence from chloroplast and nuclear genome markers. Botanica Acta 108 (5): 449-456. doi: 10.1111/ j.1438-8677.1995.tb00520.x
  • Mummenhoff K, Zunk K (1991). Should Thlaspi (Brassicaceae) be split? Preliminary evidence from isoelectric focusing analysis of Rubisco. Taxon: 427-434. doi: 10.2307/1223220
  • Mutlu B. (2018). A new perennial Erysimum species from Turkey, E. nemrutdaghense (Brassicaceae). Phytotaxa 336 (3): 239-251. doi: 10.11646/phytotaxa.336.3.2
  • Özgişi K (2020). A new species of Noccaea (Brassicaceae) from central Anatolia. Phytotaxa 432 (1): 95-103. doi: 10.11646/ phytotaxa.432.1.8
  • Özgişi K, Özüdoğru B, Ocak A (2018a). Contributions to Turkish flora: Taxonomic and distributional notes on the poorly known Noccaea (Brassicaceae) species. Phytotaxa 46 (3): 247-257. doi: 10.11646/phytotaxa.346.3.4
  • Özgişi K, Ocak A, Özüdoğru B (2018b). Noccaea birolmutlui, a new Crucifer species from south west Anatolia, Turkey. Phytotaxa 345 (1): 59-67. doi: 10.11646/phytotaxa.345.1.7
  • Özüdoğru B, Özgişi K, Tarıkahya-Hacıoğlu B, Ocak A, Mummenhoff K et al (2019). Phylogeny of the genus Noccaea (Brassicaceae) and a critical review of its generic circumscription 1, 2. Annals of the Missouri Botanical Garden 104 (3): 339-354. doi: 10.3417/2019347
  • Özüdoğru B (2018). Phylogenetic position, taxonomy, distribution, and conservation status of the rare and poorly-known Noccaea rosularis, the generic type of Masmenia (Brassicaceae). Phytotaxa 344 (2): 169-176. doi: 10.11646/phytotaxa.344.2.5
  • Özüdoğru B, German DA (2018). Taxonomic remarks on Pseudosempervivum (Brassicaceae). Phytotaxa 383 (1): 103- 110. doi: 10.11646/phytotaxa.383.1.6
  • R Core Team (2014). R: A language and environment for statistical computing. Saha PS, Sengupta M, Jha S (2017). Ribosomal DNA ITS1, 5.8 S and ITS2 secondary structure, nuclear DNA content and phytochemical analyses reveal distinctive characteristics of four subclades of Protasparagus. Journal of Systematics and Evolution 55 (1): 54-70. doi: 10.1111/jse.12221
  • Schliep KP (2010). Phangorn: phylogenetic analysis in R. Bioinformatics 27 (4): 592-593. doi: 10.1093/bioinformatics/ btq706
  • Schultz J, Maisel S, Gerlach D, Müller T, Wolf M (2005). A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11 (4): 361-364. doi: 10.1261/rna.7204505
  • Schulz OE (1936). Cruciferae. In: Engler A, Harms H (editors). Die natürlichen Pflanzenfamilien, Vol. 17B. Leipzig, Germany: Verlag von Wilhelm Englemann, pp. 227-658.
  • Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006). 4SALE–a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7 (1): 498. doi: 10.1186/1471-2105-7-498.
  • Swofford DL (2002). PAUP. Phylogenetic analysis using parsimony (and other methods). Version 4. Sunderland, Massachusetts, USA: Sinauer Associates.
  • Torres-Suárez OL (2014). Gorgonia mariae and Antillogorgia bipinnata populations inferred from compensatory base change analysis of the internal transcribed spacer 2. Molecular Phylogenetics and Evolution 79: 240-248. doi: 10.1016/j. ympev.2014.06.015
  • Venema J, Tollervey D (1999). Ribosome synthesis in Saccharomyces cerevisiae. Annual Review of Genetics 33 (1): 261-311. doi: 10.1146/annurev.genet.33.1.261
  • Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA (2010). Closing the gaps: Phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Plant Systematics and Evolution 285 (3- 4): 209-232. doi: 10.1007/s00606-010-0271-8
  • Warwick SI, Al-Shehbaz IA, Sauder CA, Murray, DF, Mummenhoff K (2004). Phylogeny of Smelowskia and related genera (Brassicaceae) based on nuclear ITS DNA and chloroplast trnL intron DNA sequences. Annals of the Missouri Botanical Garden 91: 99-123.