Transcriptome analysis reveals differentially expressed genes between human primary bone marrow mesenchymal stem cells and human primary dermal fibroblasts

Transcriptome analysis reveals differentially expressed genes between human primary bone marrow mesenchymal stem cells and human primary dermal fibroblasts

: Stromal cells have been widely used in biomedical research and disease modeling studies in vitro. The most commonly usedtypes of stromal cells are mesenchymal stem cells and fibroblasts. Their cellular phenotypes and differentiation capabilities are quitesimilar and there are no specific distinction criteria. In order to identify transcriptomic differences between these 2 cell types, weperformed next-generation RNA sequencing. Using the global gene expression profile and pathway analysis, we showed that humanprimary bone marrow mesenchymal stem cells and human primary dermal fibroblasts have different molecular signatures. We alsoidentified critical transcription factors that are differentially expressed between these cells. We then proposed that homeobox genes andsome other sequence-specific transcription factors are not only responsible for transcriptional differences, but also discriminate bonemarrow mesenchymal stem cells and dermal fibroblasts at the transcriptional level.

___

  • Bae S, Ahn JH, Park CW, Son HK, Kim KS, Lim NK, Jeon CJ, Kim H (2009). Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts. Cell Tissue Res 335: 565-573.
  • Barbeau DJ, La KT, Kim DS, Kerpedjieva SS, Shurin GV, Tamama K (2014). Early growth response-2 signaling mediates immunomodulatory effects of human multipotential stromal cells. Stem Cells Dev 23: 155-166.
  • Charbord P (2010). Bone marrow mesenchymal stem cells: historical overview and concepts. Human Gene Therapy 21: 1045-1056.
  • Charité J, McFadden DG, Merlo G, Levi G, Clouthier DE, Yanagisawa M, Richardson JA, Olson EN (2001). Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev 15: 3039-3049.
  • Denu RA, Nemcek S, Bloom DD, Goodrich AD, Kim J, Mosher DF, Hematti P (2016). Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol 136: 85-97.
  • Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD, Charalambous M, Ferron SR, Herault Y, Pavlovic G, Ferguson-Smith AC et al. (2013). Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504: 277-281.
  • Driskell RR, Watt FM (2015). Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 25: 92-99.
  • Dunwell TL, Holland PW (2016). Diversity of human and mouse homeobox gene expression in development and adult tissues. BMC Dev Biol 16: 40.
  • Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ (2014). The life and fate of mesenchymal stem cells. Front Immunol 5: 148.
  • Gong J, Han J, He J, Liu J, Han P, Wang Y, Li M, Li D, Ding X, Du Z et al. (2017). Paired related homeobox protein 1 regulates PDGF-induced chemotaxis of hepatic stellate cells in liver fibrosis. Lab Invest 97: 1020-1032.
  • Hass R, Kasper C, Böhm S, Jacobs R (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9: 12.
  • Heo JS, Lee SG, Kim HO (2017). Distal-less homeobox 5 is a master regulator of the osteogenesis of human mesenchymal stem cells. Int J Mol Med 40: 1486-1494.
  • Holland PW, Booth HA, Bruford EA (2007). Classification and nomenclature of all human homeobox genes. BMC Biol 5: 47.
  • Ichim TE, O’Heeron P, Kesari S (2018). Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med 16: 212.
  • Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H (2017). Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 35: 407-418.
  • Kubo H, Shimizu M, Taya Y, Kawamoto T, Michida M, Kaneko E, Igarashi A, Nishimura M, Segoshi K, Shimazu Y et al. (2009). Identification of mesenchymal stem cell (MSC)- transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells 14: 407-424.
  • Kundrotas G (2012). Surface markers distinguishing mesenchymal stem cells from fibroblasts. Acta Medica Lituanica 19: 75-79.
  • Li H, Marijanovic I, Kronenberg MS, Erceg I, Stover ML, Velonis D, Mina M, Heinrich JG, Harris SE, Upholt WB et al. (2008). Expression and function of Dlx genes in the osteoblast lineage. Dev Biol 316: 458-470.
  • Li W, Turner A, Aggarwal P, Matter A, Storvick E, Arnett DK, Broeckel U (2015). Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genomics 16: 1069.
  • Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T (2014). Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 508: 536-540.
  • Pontikoglou C, Deschaseaux F, Sensebé L, Papadaki HA (2011). Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation. Stem Cell Rev and Rep 7: 569-589.
  • Sarkar A, Hochedlinger K (2013). The SOX family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12: 15-30.
  • Seifert A, Werheid DF, Knapp SM, Tobiasch E (2015). Role of Hox genes in stem cell differentiation. World J Stem Cells 7: 583-595.
  • Soundararajan M, Kannan S (2018). Fibroblasts and mesenchymal stem cells: two sides of the same coin? J Cell Physiol 233: 9099- 9109.
  • Ulrich C, Hart ML, Rolauffs B, Abele H, Götze M et al. (2012). Mesenchymal stromal cells and fibroblasts. J Tissue Sci Eng 3: 109.
  • Wandzioch E, Kolterud A, Jacobsson M, Friedman SL, Carlsson L (2004). Lhx2-/- mice develop liver fibrosis. Proc Natl Acad Sci USA 101: 16549-16554.
  • Yokokura T, Kamei H, Shibano T, Yamanaka D, Sawada-Yamaguchi R, Hakuno F, Takahashi S, Shimizu T (2017). The short-stature homeobox-containing gene (shox/SHOX) is required for the regulation of cell proliferation and bone differentiation in zebrafish embryo and human mesenchymal stem cells. Front Endocrinol (Lausanne) 8: 125.
  • Zhao Q, Behringer RR, de Crombrugghe B (1996). Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nat Genet 13: 275-283.
  • Zhou TB, Ou C, Qin YH, Lei FY, Huang WF, Drummen GP (2014). LIM homeobox transcription factor 1B expression affects renal interstitial fibrosis and apoptosis in unilateral ureteral obstructed rats. Am J Physiol Renal Physiol 306: 1477-1488.