The Sca-1+ mesenchymal stromal cells modulate macrophage commitment and function

The Sca-1+ mesenchymal stromal cells modulate macrophage commitment and function

Mesenchymal stromal cells (MSCs) have been characterized as an important component of the hematopoietic niche that plays a role in regulating hematopoietic stem cell (HSC) quiescence, self-renewal, and lineage commitment. Macrophages, one kind of innate immune cells, are mainly developed from HSCs in niche. However, how MSCs and their subpopulations regulate macrophage commitment is still unknown. The current study compared the contribution of MSCs and Sca-1+MSCs to macrophage commitment and further modulation on the function of macrophages. We found that Sca-1+MSCs could promote macrophage commitment through the M-CSFR gene, and Sca-1+MSCs led macrophage polarization towards the M2 phenotype. Further functional studies indicated that Sca-1+MSCs could remarkably promote the phagocytosis capability of macrophages instead of their antigen-presentation ability. These data demonstrated that Sca-1+MSCs could regulate the commitment and function of macrophages from hematopoietic progenitors, which provided new evidence for elucidating the role of MSC subpopulations in hematopoiesis.

___

  • Barcellos-de-Souza P, Gori V, Bambi F, Chiarugi P (2013). Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim Biophys Acta 1836: 321–335.
  • Bernardo ME, Fibbe WE (2013). Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13: 392–402.
  • Chen PM, Yen ML, Liu KJ, Sytwu HK,Yen BL (2011). Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci 18: 49.
  • Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y (2014). Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46: e70.
  • Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A (2011). Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106: 1299–1310.
  • Ding L, Saunders TL, Enikolopov G,Morrison SJ (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457–462.
  • Eggenhofer E, Hoogduijn MJ (2012). Mesenchymal stem cell educated macrophages. Transplant Res 1: 12.
  • Espagnolle N, Guilloton F, Deschaseaux F, Gadelorge M, Sensebe L, Bourin P (2014). CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med 18: 104–114.
  • Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD (2007). Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 178: 5245–5252.
  • Francois M, Romieu-Mourez R, Li M, Galipeau J (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20: 187–195.
  • Frenette PS, Pinho S, Lucas D, Scheiermann C (2013). Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31: 285–316.
  • Gordon S (2003). Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.
  • Gordon S, Taylor PR (2005). Monocyte and macrophage heterogeneity. Nat Rev Immunol 5: 953–964.
  • Hume DA, MacDonald KP (2012). Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119: 1810–1820.
  • Kim J, Hematti P (2009). Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37: 1445–1453.
  • Krause DS, Scadden DT, Preffer FI (2013). The hematopoietic stem cell niche--home for friend and foe? Cytometry B Clin Cytom 84: 7–20.
  • Li X, Wang D, Chen Z, Lu E, Wang Z, Duan J, Tian W, Wang Y, You L, Zou Y et al. (2015). Gαi1 and Gαi3 regulate macrophage polarization by forming a complex containing CD14 and Gab1. P Natl Acad Sci USA 112: 4731–4736.
  • Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M et al. (2010). Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5: e9252.
  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013). Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229: 176–185.
  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549–555.
  • Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466: 829–834.
  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164: 6166–6173.
  • Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE et al. (2012). Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29: 1614–1625.
  • Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15: 42–49.
  • Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010). The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33: 387–399.
  • Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012). Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10: 259–272.
  • Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I et al. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25: 846–859.
  • Scadden DT (2006). The stem-cell niche as an entity of action. Nature 441: 1075–1079.
  • Serbina NV, Jia T, Hohl TM, Pamer EG (2008). Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26: 421–452.
  • Sica A, Mantovani A (2012). Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122: 787–795.
  • Sugiyama T, Kohara H, Noda M, Nagasawa T (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977–988.
  • Tyteca D, Nishino T, Debaix H, Van Der Smissen P, N’Kuli F, Hoffmann D, Cnops Y, Rabolli V, van Loo G, Beyaert R et al. (2015). Regulation of macrophage motility by the water channel aquaporin-1: crucial role of m0/m2 phenotype switch. PLoS One 10: e0117398.
  • Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH, Lichtler AC, Rowe DW (2001). Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J Bone Miner Res 16: 2222–2231.
  • Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004). Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258–3264.
  • Wen F, Zhang HJ, Chen Y, Yue Q, Liu Z, Zhang Q, An N, Chen X, Li N, Xin J et al. (2015). Sca1(+) mesenchymal stromal cells inhibit graft-versus-host disease in mice after bone marrow transplantation. Int Immunopharmacol 26: 50–57.
  • Xie Y, Chen C, Hume DA (2001). Transcriptional regulation of c-fms gene expression. Cell Biochem Biophys 34: 1–16.
  • Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, Nguyen AL, Kwon CW, Le AD (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28: 1856– 1868.