Chondroitin sulfate-based biomaterials for tissue engineering

Chondroitin sulfate-based biomaterials for tissue engineering

Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) that is usually found attached to proteins as part of a proteoglycan. The use of CS-based biomaterials in the field of tissue engineering applications has been intensively growing over the past decades because CS is a biopolymer with the major advantages of being biodegradable, biocompatible, easily available, and highly versatile. In vitro and in vivo studies have shown that CS-based biomaterials upregulate cartilage-specific gene expression in chondrocytes and mesenchymal stem cells and also support osteogenic differentiation by increasing the effectiveness of bone anabolic growth factors. Chondroitin sulfate proteoglycan plays a key role during the acute recovery stage after spinal cord injury by activating microglia/macrophages and modulating neurotrophic factor secretion. In addition, CS-based materials promote the wound-healing process and stimulate the regeneration of skin defects. Moreover, CS can be used to construct high toughness gels by having a double network structure. Taken together, CS-based biomaterials would be a useful material for successful replacement and regeneration of damaged cartilage, bone, skin, and neural tissues.

___

  • Avram S, Shaposhnikov S, Buiu C, Mernea M (2014). Chondroitin sulfate proteoglycans: structure-function relationship with im-plication in neural development and brain disorders. BioMed Res Int 2014: Article ID 642798.Büttner M, Möller S, Keller M, Huster D, Schiller J, Schnabelrauch M, Dieter P, Hempel U (2013). Over-sulfated chondroitin sulfate derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signalling. J Cell Physiol 228: 330–340.Burke JF, Yannas IV, Quinby Jr WC, Bondoc CC, Jung WK (1981). Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194: 413–428.Chang CH, Liu HC, Lin CC, Chou CH, Lin FH (2003). Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24: 4853–4858. David-Raoudi M, Deschrevel B, Leclercq S, Galéra P, Boumediene K, Pujol JP (2009). Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and Akt.Arthritis Rheum 60: 760–770. Coburn J, Gibson M, Bandalini PA, Laird C, Mao HQ, Moroni L, Seliktar D, Elisseeff J (2011). Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct Syst 7: 213–222.Conovaloff A, Panitch A (2011). Characterization of a chondroitin sulfate hydrogel for nerve root regeneration. J Neural Eng 8: 056003. Deepa SS, Umehara Y, Higashiyama S, Itoh N, Sugahara K (2002). Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors: implications as a physiological binding partner in the brain and other tissues. J Biol Chem 277: 43707–43716. Deepthi S, Sidhy Viha CV, Thitirat C, Furuike T, Tamura H, Jayakumar R (2014). Fabrication of chitin/poly(butylene succinate)/chondroitin sulfate nanoparticles ternary composite hydrogel scaffold for skin tissue engineering. Polymers 6: 2974–2984.Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Prydz K, Histochem J (2012). Proteoglycan synthesis and golgi organization in polarized epithelial cells. J Histochem Cytochem 60: 926–935.Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R (2006). Retinal pigment epithelium cell culture on surface modified poly(hydroxybutyrate-co-hydroxyvalerate) thin films. Biomaterials 27: 4573–4583. Flanagan TC, Wilkins B, Black A, Jockenhoevel S, Smith TJ, Pandit AS (2006). A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials 27: 2233–2246. Fthenou E, Zafiropoulos A, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN (2008). Chondroitin sulfate prevents platelet derived growth factor-mediated phosphorylation of PDGF-Rbeta in normal human fibroblasts severely impairing mitogenic responses. J Cell Biochem 103: 1866–1876.Gong JP (2010). Why are double network hydrogels so tough? Soft Matter 6: 2583–2590.Gu WL, Fu SL, Wang YX, Li Y, Lü HZ, Xu XM, Lu PH (2009). Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway. BMC Neurosci 10: 128. Guo Y, Yuan T, Xiao Z, Tang P, Xiao Y, Fan Y, Zhang X (2012) Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. J Mater Sci Mater Med23: 2267–2279. Henson FM, Getgood AM, Caborn DM, McIlwraith CW, Rushton N (2012). Effect of a solution of hyaluronic acid-chondroitin sulfate-N-acetyl glucosamine on the repair response of cartilage to single-impact load damage. Am J Vet Res 73: 306–312. Hintze V, Miron A, Moeller S, Schnabelrauch M, Wiesmann HP, Worch H, Scharnweber D (2012). Sulfated hyaluronan and chondroitin sulfate derivatives interact differently with human transforming growth factor-beta1 (TGF-beta1). Acta Biomater 8: 2144–2152. Huskisson EC (2008). Glucosamine and chondroitin for osteoarthritis. J Int Med Res 36: 1161–1179.Hwang HY, Olson SK, Esko JD, Horvitz HR (2003). Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature 423: 439–443.Jerosch J (2011). Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. J Rheumatol 2011: Article ID 969012. Keskin DS, Tezcaner A, Korkusuz P, Korkusuz F, Hasirci V (2005). Collagen-chondroitin sulfate-based PLLA-SAIB-coated rh-BMP-2 delivery system for bone repair. Biomaterials 26: 4023–4034.Kharkar PM, Kiick KL, Kloxin AM (2013). Designing degradable hydrogels for orthogonal control of cell microenvironments.Chem Soc Rev 42: 7335–7372. Knudson CB, Knudson W (2001). Cartilage proteoglycans.Semin Cell Dev Biol 12: 69–78. Kwon HJ, Yasuda K (2013). Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties. J Mech Behav Biomed Mater17: 337–346.Kwon HJ, Yasuda K, Ohmiya Y, Honma K, Chen YM, Gong JP (2010). In vitro differentiation of chondrogenic ATDC5 cells is enhanced by culturing on synthetic hydrogels with various charge densities. Acta Biomater 6: 494–501.Laabs T, Carulli D, Geller HM, Fawcett JW (2005). Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 15: 116–120.Lee KY, Mooney DJ (2012). Alginate: properties and biomedical applications. Prog Polym Sci 37: 106–126. Lee KY, Yuk SH (2007). Polymeric protein delivery systems.Prog Polym Sci 32: 669–697.Loss M, Wedler V, Kunzi W, Meuli-Simmen C, Meyer VE (2000). Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26: 644–652. Martel-Pelletier J, Kwan Tat S, Pelletier JP (2010). Effects of chondroitin sulfate in the pathophysiology of the osteoarthritic joint: a narrative review. Osteoarthr Cartil 18, Suppl 1: S7–11.Mikami T, Kitagawa H (2013).Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830: 4719–4733.Park YJ, Lee YM, Lee JY, Seol YJ, Chung CP, Lee SJ (2000). Controlled release of platelet-derived growth factor-BB from chondroitin sulfate–chitosan sponge for guided bone regeneration. J Control Release 67: 385–394. Pawar SN, Edgar KJ (2012). Alginate derivatization: a review of chemistry, properties and applications, Biomaterials 33: 3279–3305.Quan R, Zheng X, Xu S, Zhang L, Yang D (2014). Gelatin-chondroitin-6-sulfate-hyaluronic acid scaffold seeded with vascular endothelial growth factor 165 modified hair follicle stem cells as a three-dimensional skin substitute. Stem Cell Research and Therapy 5: 118.Robson MC, Barnett RA, Leitch IO, Hayward PG (1992). Prevention and treatment of postburn scars and contracture. World J Surg 16: 87–96. Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, Rechavi G, Schwartz M (2008). Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5: e171.Santo VE, Gomes ME, Mano JF, Reis RL (2012). Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J Tissue Eng Regen Med 6 (Suppl 3): S47–59.Schnabelrauch M, Scharnweber D, Schiller J (2013). Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr Med Chem 20: 2501–2523.Sintov A, Di-Capua N, Rubinstein A (1995). Cross-linked chondroitin sulphate: characterization for drug delivery purposes. Biomaterials 16: 473–478.Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Götz M, Faissner A (2010). Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28: 775–787.Sirko S, von Holst A, Wizenmann A, Götz M, Faissner A (2007). Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134: 2727–2738. Suekama TC, Hu J, Kurokawa T, Gong JP, Gehrke SH (2013). Double-network strategy improves fracture properties of chondroitin sulfate networks. ACS Macro Lett 2: 137–140.Taipale J, Keski-Oja J (1997). Growth factors in the extracellular matrix.FASEB J 11: 51–59.Takagaki K, Munakata H, Kakizaki I, Iwafune M, Itabashi T, Endo M (2002). Domain structure of chondroitin sulfate E octasaccharides binding to type V collagen. J Biol Chem 277: 8882–8889.Tan H, Gong Y, Lao L, Mao Z, Gao C (2007). Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci Mater Med 18: 1961–1968.Ueoka C, Kaneda N, Okazaki I, Nadanaka S, Muramatsu T, Sugahara K (2000). Neuronal cell adhesion, mediated by the heparin-binding neuroregulatory factor midkine, is specifically inhibited by chondroitin sulfate E. Structural and functional implications of the over-sulfated chondroitin sulfate. J Biol Chem 275: 37407–37413.Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Fairbrother DH, Cascio B, Elisseeff JH (2007). Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater 6: 385–392. Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX, Tan F, Santiago L, Mills EM, Wang Y et al. (2008). Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci121: 3083–3091.Wang SC, Chen BH, Wang LF, Chen JS (2007). Characterization of chondroitin sulfate and its interpenetrating polymer network hydrogels for sustained-drug release. Int J Pharmacogn 329: 103–109.Wang TW, Sun JS, Wu HC, Tsuang YH, Wang WH, Lin FH (2006). The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27: 5689–5697.Wang TW, Wu HC, Huang YC, Sun JS, Lin FH (2006). Biomimetic bilayered gelatin-chondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering. Artif Organs 30: 141–149.Wang W, Zhang M, Lu W, Zhang X, Ma D, Rong X, Yu C, Jin Y (2010). See comment in PubMed Commons belowCross-linked collagen-chondroitin sulfate-hyaluronic acid imitating extracellular matrix as scaffold for dermal tissue engineering. See comment in PubMed Commons belowTissue Eng Part C Methods 16: 269–279.Xu H, Yan Y, Li S (2011). PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials 32: 4506–4516.Yamada S, Sugahara K, Özbek S (2011). Evolution of glycosaminoglycans: comparative biochemical study. Commun Integr Biol 4: 150–158.Yamaguchi T, Ohtake S, Kimata K (2007). Molecular cloning of squid N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase and synthesis of a unique chondroitin sulfate containing E-D hybrid tetrasaccharide structure by the recombinant enzyme. Glycobiology 17: 1365–1376.Yan S, Zhang Q, Wang J, Liu Y, Lu S, Li M, Kaplan DL (2013). Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomater 9: 6771–6782.Yang S, Guo Q, Shores LS, Aly A, Ramakrishnan M, Kim GH, Lu Q, Su L, Elisseeff JH (2015). Use of a chondroitin sulfate bioadhesive to enhance integration of bioglass particles for repairing critical-size bone defects. J Biomed Mater Res A 103: 235–242.