The Nickel Hyperaccumulating Plants of the Serpentines of Turkey and Adjacent Areas: A Review with New Data

Botanical exploration of serpentine soils in Turkey and neighbouring countries has shown that the region includes at least 59 taxa capable of hyperaccumulating nickel (to >0.1% of plant dry weight). These hyperaccumulators belong to the Brassicaceae (Aethionema R.Br., Alyssum L., Bornmuellera Hausskn., Pseudosempervivum (Boiss.) Grossh. (Cochlearia L.), and Thlaspi L. s.l.) and the Asteraceae (Centaurea L.). We review present knowledge of the hyperaccumulators and provide additional data recently obtained. Some species are serpentine-endemic and invariably Ni hyperaccumulating; others show more complex distribution and Ni-accumulating behaviour. Many are good subjects for biochemical studies on the Ni-accumulation and sequestering processes. There is potential in Turkey for exploiting Ni hyperaccumulation for remediation of Ni-contaminated soils (´phytoremediation´) and for economical selective extraction of metal compounds by cropping hyperaccumulators (´phytomining´). However, there is a need for further exploration of the natural resources and some further taxonomic work by traditional and DNA methods. Attention must be paid to conservation issues, as some of the relevant species are quite rare.

The Nickel Hyperaccumulating Plants of the Serpentines of Turkey and Adjacent Areas: A Review with New Data

Botanical exploration of serpentine soils in Turkey and neighbouring countries has shown that the region includes at least 59 taxa capable of hyperaccumulating nickel (to >0.1% of plant dry weight). These hyperaccumulators belong to the Brassicaceae (Aethionema R.Br., Alyssum L., Bornmuellera Hausskn., Pseudosempervivum (Boiss.) Grossh. (Cochlearia L.), and Thlaspi L. s.l.) and the Asteraceae (Centaurea L.). We review present knowledge of the hyperaccumulators and provide additional data recently obtained. Some species are serpentine-endemic and invariably Ni hyperaccumulating; others show more complex distribution and Ni-accumulating behaviour. Many are good subjects for biochemical studies on the Ni-accumulation and sequestering processes. There is potential in Turkey for exploiting Ni hyperaccumulation for remediation of Ni-contaminated soils (´phytoremediation´) and for economical selective extraction of metal compounds by cropping hyperaccumulators (´phytomining´). However, there is a need for further exploration of the natural resources and some further taxonomic work by traditional and DNA methods. Attention must be paid to conservation issues, as some of the relevant species are quite rare.

___

  • 1. Brooks RR. Serpentine and Its Vegetation: a Multidisciplinary Approach. Dioscorides Press. Portland, Oregon; 1987.
  • 2. Roberts BA, Proctor J. eds. The Ecology of Areas with Serpentinized Rocks – a World View. Kluwer Academic Publishers, Dordrecht, Netherlands; 1992.
  • 3. Baker AJM, Proctor J, Reeves RD. eds. The Vegetation of Ultramafic (Serpentine) Soils, Intercept Ltd., Andover, UK; 1992.
  • 4. Kruckeberg AR. Geology and Plant Life: The Effect of Landforms and Rock Types on Plants. University of Washington Press, Seattle; 2002.
  • 5. Minguzzi C, Vergnano O. Il contenuto di nichel nelle ceneri di Alyssum bertolonii Desv.. Atti Soc Tosc Sci Nat, Mem Ser A 55: 49-77, 1948.
  • 6. Doksopulo EP. Nickel in rocks, soils, water and plants adjacent to the talc deposits of the Chorchanskaya group. Izdat Tbilisk Univ, Tbilisi; 1961.
  • 7. Menezes de Sequeira E. Toxicity and movement of heavy metals in serpentinitic rocks (north-eastern Portugal). Agron Lusit 30: 115- 154, 1969.
  • 8. Wild H. The vegetation of nickel-bearing soils. Kirkia 7 (suppl.): 1- 62, 1970.
  • 9. Severne BC, Brooks RR. A nickel accumulating plant from Western Australia. Planta 103: 91-94, 1972.
  • 10. Cole MM. Geobotanical and biogeochemical investigations in the sclerophyllous woodland and scrub associations of the eastern goldfields area of Western Australia, with particular reference to the role of Hybanthus floribundus (Lindl.) F. Muell. as nickel indicator and accumulator plant. J Appl Ecol 10: 269-320, 1973.
  • 11. Jaffré T, Schmid M. Accumulation du nickel par une Rubiacée de Nouvelle Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. Compt Rend Acad Sci (Paris), Sér D 278: 1727-1730, 1974.
  • 12. Jaffré T, Brooks RR, Lee J et al. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193: 579-580, 1976.
  • 13. Brooks RR, Lee J, Reeves RD et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7: 49-57, 1977.
  • 14. Reeves RD. Hyperaccumulation of nickel by serpentine plants. In: Proctor J, Baker AJM, Reeves RD. eds. The vegetation of ultramafic (serpentine) soils. Intercept Ltd., Andover, U.K.; 1992, pp. 253-277.
  • 15. Brooks RR, Radford CC. Nickel accumulation by European species of the genus Alyssum. Proc Roy Soc (London) B200: 217-224, 1978.
  • 16. Brooks RR, Morrison RS, Reeves RD et al. Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc Roy Soc (London) B203: 387-403, 1979.
  • 17. Reeves RD, Baker AJM. Metal-accumulating plants. In: Raskin I, Ensley BD eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, New York; 2000, pp. 193-229.
  • 18. Reeves RD. Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. Taxon 37: 309-318, 1988.
  • 19. Reeves RD, Brooks RR, Dudley TR. Uptake of nickel by species of Alyssum, Bornmuellera and other genera of Old World Tribus Alysseae. Taxon 32: 184-192, 1983.
  • 20. Reeves RD, Kruckeberg AR, Adıgüzel N et al. Studies on the flora of serpentine and other metalliferous areas of western Turkey. S Afr J Sci 97: 513-517, 2001.
  • 21. Reeves RD, Adıgüzel N. Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turk J Bot 28: 147-153, 2004.
  • 22. Reeves RD, Baker AJM, Borhidi A et al. Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83: 29-38, 1999.
  • 23. Adıgüzel N, Reeves RD. A new nickel-accumulating species of Alyssum (Cruciferae) from western Turkey. Edinb J Bot 59: 215- 219, 2002.
  • 24. Tan K. Pers. comm. to N. Turland, recorded in Turland N, Chilton, L. Flora of Crete: Supplement II, Additions 1997-2007, recorded at: www.marengowalks.com
  • 25. Ghaderian SM, Mohtadi A, Rahiminejad MR et al. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145: 293-298, 2007.
  • 26. Ghaderian SM, Mohtadi A, Rahiminejad MR et al. Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant and Soil 293: 91-97, 2007.
  • 27. Reeves RD, Brooks RR. European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18: 275-283, 1983.
  • 28. Reeves RD, Macfarlane RM, Brooks RR. Accumulation of nickel and zinc by western North American genera containing serpentine-tolerant species. Amer J Bot 70: 1297-1303, 1983.
  • 29. Carlström A. New taxa and notes from the SE Aegean area and SW Turkey. Willdenowia 16: 73-78, 1986.
  • 30. Reeves RD, Baker AJM, Lloyd-Thomas D. The genus Thlaspi as a source of plants for phytoremediation studies. Proceedings of Extended Abstracts, 5th International Conference on the Biogeochemistry of Trace Elements, Vienna, 1999. Vol. 1, pp. 2-3.
  • 31. Meyer FK. Conspectus der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Feddes Rep 84: 449-470, 1973.
  • 32. Meyer FK. Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. I. Geschichte, Morphologie und Chorologie. Feddes Rep 90: 129-154, 1979.
  • 33. Davis, PH, Mill RR, Tan K. Cruciferae. In: Flora of Turkey and the East Aegean Islands. Vol. 10, 29-58, 1988.
  • 34. Mummenhoff K, Franzke A, Koch M. Molecular phylogenetics of Thlaspi s.l. (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. Can J Bot 75, 469-482, 1997.
  • 35. Koch M, Mummenhoff K. Thlaspi s. str. (Brassicaceae) versus Thlaspi s. l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Plant Syst Evol 227: 209-225, 2001.
  • 36. Al-Shehbaz IA, Mutlu B, Dönmez AA. The Brassicaceae (Cruciferae) of Turkey, updated. Turk J Bot 31: 327-336, 2007.
  • 37. Davis PH (ed), Flora of Turkey, Vol. 1, Edinburgh Univ. Press, Edinburgh, pp. 248-495, 1965.
  • 38. Greuter W, Raus T. Med-checklist notulae. 7. Willdenowia 13: 79- 99, 1983.
  • 39. Aytaç Z, Nordt B, Parolly G. A new species of Noccaea (Brassicaceae) from South Anatolia, Turkey. Bot J Linn Soc 150: 409-416, 2006.
  • 40. Akman Y. Contribution à l’étude de la flore les montagnes de l’Amanus. Communications de la Faculté des Sciences de l’Université d’Ankara. 17C (II), 1973, p. 121.
  • 41. Pobedimova E. Revisio generis Cochlearia L. 2. Novosti Sist Vyssh Rast 7:167-195, 1970.
  • 42. Contandriopoulos J & Quézel P. Contribution à l’étude de la flore du Taurus et de l’Amanus. Bull Soc Bot Fr 123: 415-432, 1976.
  • 43. Aytaç Z, Aksoy A. A new species of Bornmuellera Hausskn. from south Anatolia, Turkey. Bot J Linn Soc 134: 485-490, 2000.
  • 44. Reeves RD, Adıgüzel N, Baker AJM. Nickel hyperaccumulation in Bornmuellera kiyakii and associated plants of the Brassicaceae from Kızıldağ Derebucak (Konya), Turkey. (in press).
  • 45. Raskin I, Ensley BD eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons, New York; 2000.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Gamma ray-and EMS-induced bold high-yielding mutants in chickpea (Cicer arietnum L.)

Mohammad ANIS, Aijaz A. WANI

The effect of hperosmotic stress and nitrogen starvation growth and $ Beta$-galactosidase synthesis in kluyveromyces lactis and kluyveromyces marxianus

Sezai TÜRKEL, Elif ARIK, Sinem GÜZELVARDAR

Antioxidant and Vasorelaxant Activities of Flavonoids from Amygdalus lycioides var. horrida

Hossein BABAEI, Omid SADEGHPOUR, Lutfun NAHAR, Abbas DELAZAR, Hossein NAZEMIYEH, Mohammad Reza MANSOURI, Naser POURSAEID, Solmaz ASNAASHARI, Sedigheh Bamdad MOGHADAM, Satyajit Dey SARKER

Specific Individuals of Rainbow Trout (Oncorhynchus mykiss) Are Able to Show Time-Place Learning

Mohammad Saeed HEYDARNEJAD, John PURSER

Sensitivity of Kinetoplastids to Aminoglycoside: Correlation with the 3’ Region of the Small Subunit rRNA Gene

A. S. Hamad ELGAZWY, Masoom M. YASINZAI

The Antioxidant Activity of Some Medicinal Plants

Prateek Kumar JAIN, Veerasamy RAVICHANDRAN, Simant SHARMA, Ram K. AGRAWAL

Antioxidant and vasorelaxant activities of flavonoids from Amygdalus Iycioides var. horrida

Hossein BABAEI, Omid SADEGHPOUR, Abbas DELAZAR, Hossein NAZEMIYEH, Mohammad Reza MANSOURI, Naser POURSAEID, Solmaz ASNAASHARI, Sedigheh Bamdad MOGHADAM, Satyajit Dey SARKER, Lutfun NAHAR

The Effect of Hyperosmotic Stress and Nitrogen Starvation on Growth and b-Galactosidase Synthesis in Kluyveromyces lactis and Kluyveromyces marxianus

Sezai TÜRKEL, Elif ARIK, Sinem GÜZELVARDAR

Sensitivty of kinetoplastids to aminoglycoside: Correlation with the 3' region of the small subunit rRNA gene

A.S. Hamad ELGAZWY, Massom M. YASINZAI

Gamma Ray- and EMS-Induced Bold-Seeded High-Yielding Mutants in Chickpea (Cicer arietinum L.)

Aijaz A. WANI, Mohammad ANIS