The genus Crocus, series Crocus (Iridaceae) in Turkey and 2 East Aegean islands: a genetic approach

In this study, a total of 26 Crocus specimens from different locations across Turkey and 2 East Aegean islands (Chios and Samos) were analyzed using 12 amplified fragment length polymorphism (AFLP) primer combinations to obtain information on genetic diversity, population structure, and genetic relationships. A total of 369 polymorphic AFLP bands were generated and scored as binary data. Genetic similarities were determined. Cluster analysis revealed 4 major groups among the 26 genotypes examined in this study. The nuclear DNA contents (2C) of the 26 Crocus specimens were found to range from 5.08 pg in C. asumaniae to 9.75 pg in C. sativus. Polymorphic information content (PIC) values were used to examine the capacity of the various primer pairs to amplify polymorphisms in the Crocus specimens. The PIC values ranged from 0.218 (M-CAA/E-AGC) to 0.512 (M-CAT/E-AAG) and showed an average of 0.34. In sum, we herein used AFLP analysis to identify a high level of polymorphism among Crocus specimens collected from various locations in Turkey and Greece, and our structural analysis yielded 2 reconstructed populations. These findings provide new insight into the relationships among different Crocus genotypes and show that AFLP analysis can be useful for Crocus diversity studies.

The genus Crocus, series Crocus (Iridaceae) in Turkey and 2 East Aegean islands: a genetic approach

In this study, a total of 26 Crocus specimens from different locations across Turkey and 2 East Aegean islands (Chios and Samos) were analyzed using 12 amplified fragment length polymorphism (AFLP) primer combinations to obtain information on genetic diversity, population structure, and genetic relationships. A total of 369 polymorphic AFLP bands were generated and scored as binary data. Genetic similarities were determined. Cluster analysis revealed 4 major groups among the 26 genotypes examined in this study. The nuclear DNA contents (2C) of the 26 Crocus specimens were found to range from 5.08 pg in C. asumaniae to 9.75 pg in C. sativus. Polymorphic information content (PIC) values were used to examine the capacity of the various primer pairs to amplify polymorphisms in the Crocus specimens. The PIC values ranged from 0.218 (M-CAA/E-AGC) to 0.512 (M-CAT/E-AAG) and showed an average of 0.34. In sum, we herein used AFLP analysis to identify a high level of polymorphism among Crocus specimens collected from various locations in Turkey and Greece, and our structural analysis yielded 2 reconstructed populations. These findings provide new insight into the relationships among different Crocus genotypes and show that AFLP analysis can be useful for Crocus diversity studies.

___

  • Alavi-Kia SS, Mohammadi SA, Aharizad S, Moghaddam M (2008). Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnol Biotec Eq 22: 795–800.
  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993). Optimizing parental selection for genetic linkage maps. Genome 36: 181–186.
  • Arumuganathan K, Earle ED (1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9: 229–241.
  • Asfaw A, Blair MW, Almekinders C (2009). Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120: 1–12.
  • Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli S, Germana MS, Mulas M, Porceddu A (2006). Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot-London 98: 935–942.
  • Beiki AH, Keifi F, Mozafari J (2010). Genetic differentiation of Crucus species by random amplified polymorphic DNA. Genetic Engineering and Biotechnology Journal 2010: 1–10.
  • Bennett MD, Leitch IJ (1995). Nuclear DNA amounts in angiosperms. Ann Bot-London 76: 113–176.
  • Bennetzen J, Ma J, Devos KM (2005). Mechanisms of recent genome size variation in flowering plants. Ann Bot-London 95: 127– 1
  • Blears MJ, De Grandis SA, Lee H, Trevors JT (1998). Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biot 21: 99–114.
  • Botstein D, White RL, Skolnick M, Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331.
  • Brandizzi F, Grilli Caiola MG (1996). Quantitative DNA analysis in different Crocus species (Iridaceae) by means of flow cytometry. Giornale Botanico Italiano 130: 643–645.
  • Brandizzi F, Grilli Caiola MG (1997). Calcium in the reproductive biology of Crocus biflorus Mill. subsp. biflorus (Iridaceae). Plant Biosyst 131: 69–74.
  • Brandizzi F, Grilli Caiola MG (1998). Flow cytometric analysis of nuclear DNA in Crocus sativus and allies (Iridaceae). Plant Syst Evol 211: 149–154.
  • Çelebioğlu S, Baytop ÖT (1949). Bitkisel Tozların Tetkiki İçin Yeni Bir Reaktif. İstanbul: Institute of Pharmacognosy (in Turkish).
  • Chen X, Min D, Yasir TA, Gang Hu Y (2012). Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 7: e445
  • Cho YI, Park JH, Lee CW, Ra WH, Chung JW, Lee JR, Ma KH, Lee SY, Lee KS, Lee MC et al. (2011). Evaluation of the genetic diversity and population structure of sesame (Sesamum indicum L.) using microsatellite markers. Genes Genom 33: 187–195.
  • Dolezel J, Binarova P, Lucretti S (1989). Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31: 113–120.
  • Doyle JJ, Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  • Earl DA, von Holt BM (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361.
  • Erol O, Küçüker O (2007). Leaf anatomy of some endemic Crocus L. (Iridaceae) taxa from the West Anatolia. Int J Bot 3: 290–295.
  • Erol O, Şık L, Kaya HB, Tanyolaç B, Küçüker O (2011). Genetic diversity of Crocus antalyensis B. Mathew (Iridaceae) and a new subspecies from southern Anatolia. Plant Syst Evol 294: 281–287.
  • Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.
  • Fernandez JA (2004). Biology, biotechnology and biomedicine of saffron. Recent Research of Development in Plant Science 2: 127–159.
  • Grilli Caiola MG, Caputo P, Zanier R (2004). RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biol Plantarum 48: 375–380.
  • Google Inc. (2012). Google Earth. Version 7.0.2.8415. Part of Anatolia, Thrace and East Aegean Islands. Available online at http://www. google.com/earth/index.html, visited on 02/04/2012.
  • Hamza H, Benabderrahim MA, Elbekkay M, Ferdaous G, Triki T, Ferchichi A (2012). Investigation of genetic variation in Tunisian date palm (Phoenix dactylifera L.) cultivars using ISSR marker systems and their relation with fruit characteristics. Turk J Biol 36: 449–458.
  • Harpke D, Meng S, Ruttun T, Kerndorff H, Blattner F (2013). Phylogeny of Crocus (Iridaceae) based on one chloroplast and two nuclear loci: ancient hybridization and chromosome number evolution. Mol Phylogenet Evol 66: 617–627.
  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009). Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9: 1322–1332.
  • Husaini AM, Wani SA, Sofi P, Rather AG, Parray GA, Shikari AB, Mir JI (2009). Bioinformatics of saffron (Crocus sativus L.) improvement. Communications in Biometry and Crop Science 4: 3–8.
  • Jaccard P (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44: 223–270.
  • Jonah PM, Bello LL, Lucky O, Midau A, Moruppa SM (2011). Review: the importance of molecular markers in plant breeding programmes. Global Journal of Science Frontier Research 11: 0975-5896.
  • Joshi SP, Prabhakar K, Ranjekar PK, Gupta VS (2011). Molecular markers in plant genome analysis. Current Science: 25 July. Available online at http/www.ias.ac.in/currsci/jul25/articles15. htm.
  • Kerndorff H, Pasche E (2011). Two new taxa of Crocus (Liliiflorae, Iridaceae) from Turkey. Stapfia 95: 2–5.
  • Kerndorff H, Pasche E, Harpke D, Blattner F (2011). Three new species of Crocus (Liliiflorae, Iridaceae) from Turkey. Stapfia 95: 19–
  • Kim EJ, Sa KJ, Cheul Park K, Lee JK (2012). Study of genetic diversity and relationships among accessions of foxtail millet [Setaria italica (L.) P. Beauv.] in Korea, China, and Pakistan using SSR markers. Genes Genom 34: 529–538.
  • Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito VS (2011). Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Genet Resour Crop Ev 58: 519–531.
  • Lee M (1995). DNA markers and plant breeding programs. Adv Agron 55: 265–344.
  • Mandel JR, Dechaine JM, Marek LF, Burke JM (2011). Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annus L. Theor Appl Genet 123: 693–704.
  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003). Land-scape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18: 189–197.
  • Mathew B (1982). The Crocus. A Revision of the Genus Crocus (Iridaceae). London: B. T. Batsford.
  • Mathew B (1984). Crocus. In: Davis PH, editor. Flora of Turkey and the East Aegean Islands, Vol. 8. Edinburgh: Edinburgh University Press, pp. 413–438.
  • Mathew B, Petersen G, Seberg O (2009). A reassessment of Crocus based on molecular analysis. New Plantsman 8: 50–57.
  • Meudt HM, Clarke AC (2007). Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12: 106–117.
  • Ming H, Xie F, Chen L, Zhao X, Jojee L, Madonna D (2010). Comparative analysis of genetic diversity and structure in rice using ILP and SSR markers. Rice Science 17: 257–268.
  • Moraga AR, Trapero A, Ahrazem O, Gomez LG (2010). Crocins transport in Crocus sativus: the long road from a senescent stigma to a newborn corm. Photochemistry 71: 1506–1513.
  • Mueller UG, Wolfenbarger LL (1999). AFLP genotyping and fingerprinting. Trends Ecol Evol 14: 389–394.
  • Muthusamy S, Kanagarajan S, Ponnusamy S (2008). Efficiency of RAPD and ISSR markers system in accessing genetic variation of rice bean (Vigna umbellata) landraces. Electron J Biotechn 11: 1–10.
  • Nazzal KW, Shibli RA, Makhadmeh IM, Syouf MQ (2011). Amplified fragment length polymorphism (AFLP) analysis in Crocus spp. collected from Northern Jordan. Jordan Journal of Agricultural Sciences 7: 1–8.
  • Nemati Z, Zeinalabedina M, Mardi M, Pirseyediand SM, Marashi AH, Nekoui SMK (2012). Isolation and characterization of a first set of polymorphic microsatellite markers in saffron, Crocus sativus. Am J Bot 99: e340–e343.
  • Odong TL, van Heerwaarden J, Jansen J, van Hintum TJL, van Eeuwijk FA (2011). Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theor Appl Genet 123: 195–205.
  • Ohri D (1998). Genome size variation and plant systematic. Ann Bot-London 82: 75–83.
  • Petersen G, Seberg O, Thorsoe S, Jorgensen T, Mathew B (2008). A phylogeny of the genus Crocus (Iridaceae) based on sequence data from five plastid regions. Taxon 57: 487–499.
  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996). The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2: 225–238.
  • Poyraz İE, Sözen E, Ataşlar E, Poyraz İ (2012). Determination of genetic relationships among Velezia L. (Caryophyllaceae) species using RAPD markers. Turk J Biol 36: 293–302.
  • Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945– 9
  • Rohlf FJ (2005). NTSYSpc (Numerical Taxonomy and Multivariate Analysis System), Version 2.2. New York: Exeter Software, Applied Biostatistics Inc.
  • Rubio-Moraga A, Trapero-Mozos A, Gómez-Gómez L, Ahrazem O (2010). Intersimple sequence repeats markers for molecular characterization of Crocus cartwrightianus cv. albus. Indus Crops Prod 32: 147–151.
  • Rudall P, Mathew B (1990). Leaf anatomy in Crocus (Iridaceae). Kew Bulletin 45: 535–544.
  • Sardaro MLS, Atallah M, Picarella ME, Aracri B, Pagnotta MA (2012). Genetic diversity, population structure and phylogenetic inference among Italian orchids of the Serapias genus assessed by AFLP molecular markers. Plant Syst Evol 298: 1701–1710.
  • Smarda P (2006). DNA ploidy levels and intraspecific DNA content variability in Romanian fescues measured in fresh and herbarium material. Folia Geobot 41: 417–432.
  • Smarda P, Bures P (2006). Intraspecific DNA content variability in Festuca pallens on different geographic scales and ploidy levels. Ann Bot-London 98: 665–678.
  • Smarda P, Bures P, Horova L, Foggi B, Rossi G (2008). Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot-London 101: 421–433.
  • Sönmezoğlu ÖA, Bozmaz B, Yıldırım A, Kandemir N, Aydın N (2012). Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters. Turk J Biol 36: 589–597.
  • Souza-Chies TT, dos Santos EK, Eggers L, Flores AM, Alves EMS, Fachinetto J, Lustosa J, Corrêa LB, Tacuatiá LO, Piccoli P et al. (2012). Studies on diversity and evolution of Iridaceae species in southern Brazil. Genet Mol Biol 35: 1027–1035.
  • Stich B, van Inghelandt D, Melchinger AE, Lebreton C (2010). Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120: 1289–1299.
  • Swanson T (1996). Global values of biological diversity: the public interest in the conservation of plant genetic resources for agriculture. Plant Genetic Resources Newsletter 105: 1–7.
  • Taşkın BG, Vardareli N, Doğaç E (2012). Genetic diversity of natural Cyclamen alpinum populations. Turk J Biol 36: 413–422.
  • Türktaş M, Aslay M, Kaya E, Ertuğrul F (2012). Molecular characterization of phylogenetic relationships in Fritillaria species inferred from chloroplast trnL-trnF sequences. Turk J Biol 36: 552–560.
  • Uzun FG, Kalender S, Durak D, Demir F, Kalender Y (2009). Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem Toxicol 47: 1903–1908.
  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.
  • Winter P, Kahl G (1995). Molecular marker technologies for plant improvement. World J Microb Biot 11: 438–448.
  • Zhang L, Zhao H, Fan X, Wang M, Ding C, Yang R, Yin Z, Xie X, Zhou Y, Wan D (2012). Genetic diversity among Salvia miltiorrhiza Bunge and related species inferred from nrDNA ITS sequences. Turk J Biol 36: 319–326.
  • Zubor AA, Suranyi G, Gyori Z, Borbely G, Prokish J (2004). Molecular biological approach of the systematics of Crocus sativus L. and its allies. Acta Hortic 650: 85–93.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The genus Crocus, series Crocus (Iridaceae) in Turkey and 2 East Aegean islands: a genetic approach

Osman EROL, Hilal Betül KAYA, Levent ŞIK, Metin TUNA, Levent CAN, Muhammed Bahattin TANYOLAÇ

Molecular characterization of the encoding regions and tissue expression analyses for 3 novel buffalo AKT genes, AKT1, AKT2, and AKT3

Chunfeng WU, Lixian LIU, Jinlong HUO, Dalin LI, Yueyun YUAN, Feng YUAN, Yongwang MIAO

Stimulatory effect of methyl jasmonate and squalestatin on phenolic metabolism through induction of LOX activity in cell suspension culture of yew

Zohreh JALALPOUR, Leila SHABANI, Ladan AFGHANI, Majid SHARIFI-TEHRANI, Sayed-Asadollah AMINI

A comparative study on plant morphology, gas exchange parameters, and antioxidant response of Ocimum basilicum L. and Origanum vulgare L. grown on industrially polluted soil

Ira STANCHEVA, Maria GENEVA, Yuliana MARKOVSKA, Nikolina TZVETKOVA

Study of in vitro anther culture in selected genotypes of genus Capsicum

Dorota OLSZEWSKA, Anna KISIALA, Aleksandra NIKLAS-NOWAK, Pawel NOWACZYK

Comprehensive analysis of beta-galactosidase protein in plants based on Arabidopsis thaliana

Samin SEDDIGH, Maryam DARABI

Genotoxic effects of zinc oxide and titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay

Eşref DEMİR, Nuray KAYA, Bülent KAYA

Ex situ conservation of Dianthus giganteus d’Urv. subsp. banaticus (Heuff.) Tutin by in vitro culture and assessment of somaclonal variability by molecular markers

Liliana JARDA, Anca BUTIUC-KEUL, Maria HÖHN, Andrzej PEDRYC, Victoria CRISTEA

Cloning, expression, and characterization of a novel CTP synthase gene from Anoxybacillus gonensis G2

Cemal SANDALLI, Ayşegül SARAL, Serdar ÜLKER, Hakan KARAOĞLU, Ali Osman BELDÜZ, Ayşegül ÇOPUR ÇİÇEK

A simple guanidinium isothiocyanate method for bacterial genomic DNA isolation

Erkan MOZİOĞLU, Müslüm AKGÖZ, Candan TAMERLER, Zühtü Tanıl KOCAGÖZ