Positive regulation of TNFR1 signaling via SH3 recognition motif

Positive regulation of TNFR1 signaling via SH3 recognition motif

TNF is a pleiotropic cytokine and shows its biological function by binding to its receptors called TNFR1 and TNFR2. WhileTNFR1 induces apoptosis by activation of caspase-8 via the “death domain”, it also activates IKKα/β, MKK3/6, MKK4/7 by activation ofTAK1. Although the TNFR1 signaling pathway is known by in large, it is not known how AKT and MAPKs p38, ERK1/2, and JNK1/2are activated. The presence of a proline-rich PPAP region, (P448PAP451, a binding site for the SH3 domain-containing proteins) very closeto the C-terminus promoted us to determine whether this region has any role in the TNFR1 signal transduction. To test this, the codonsof P448 and P451 were changed to that of Alanin, GCG, via site-directed mutagenesis, and this plasmid was named as TNFR1-SH3-P/A.Subsequently, ectopically expressed the wild type TNFR1 and TNFR1-SH3-P/A in 293T cells and determined the levels of TNF-α-mediated phosphorylations of ERK, p38, JNK and AKT, NF-kB, and caspase-8 activation. While ectopic expression of our mutant diminishedTNFα-mediated phosphorylations of p38, JNK, ERK and AKT, it increased NF-kB, and caspase-8 activations. In conclusion, TNFα-mediated ERK, AKT, JNK, p38 activations are affected by TNFR1 SH3 domain modifications.

___

  • Bertr MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A et al. (2008). cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Molecular Cell 6: 689-700. doi: 10.1016/j.molcel.2008.05.014
  • Boone E, Vandevoorde V, Wilde GD, Haegeman G (1998). Activation of p42/p44 mitogen-activated protein kinases (MAPK) and p38 MAPK by tumor necrosis factor (TNF) is mediated through the death domain of the 55-kDa TNF receptor. FEBS Letters 2: 275-280. doi: 10.1016/j.cell.2009.05.021
  • Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Molecular Cell 2: 245-257. doi: 10.1016/j.molcel.2006.03.026
  • Fan Y, Yu Y, Shi Y, Sun W, Xie M et al. (2010). Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NFkappaB and JNK/AP-1 activation. The Journal of Biological Chemistry 8: 5347-5360. doi: 10.1074/jbc.M109.076976
  • Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E et al. (2011). Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 7340: 591-596. doi: 10.1038/nature09816
  • Grell M, Zimmermann G, Hülser D, Pfizenmaier K, Scheurich P (1994). TNF receptors TR60 and TR80 can mediate apoptosis via induction of distinct signal pathways. Journal of Immunology 5: 1963-1972.
  • Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM et al. (2009). Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Molecular Cell 5: 831-844. doi: 10.1016/j.molcel.2009.10.013
  • Hapil FZ, Çopuroğlu FE, Ertosun MG, Mert U, Özeş D et al. (2020). Negative regulation of TNFR1 signaling via PKA-mediated phosphorylation of TNFR1. Journal of Interferon Cytokine Research 5: 225-235. doi: 10.1089/jir.2019.0128
  • He S, Wang L, Miao L, Wang T, Du F et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNFalpha. Cell 6: 1100-1111. doi: 10.1016/j.cell.2009.05.021
  • Hildt E, Oess S (1999). Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I. The Journal of Experimental Medicine 11: 1707-1714. doi: 10.1084/ jem.189.11.1707
  • Hsu H, Shu HB, Pan MG, Goeddel DV (1996). TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 2: 299-308. doi: 10.1016/ s0092-8674(00)80984-8
  • Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996). TNFdependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387-396. doi: 10.1016/s1074-7613(00)80252-6
  • Hsu H, Xiong J, Goeddel DV (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 4: 495-504. doi: 10.1016/0092-8674(95)90070-5
  • Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL et al. (2007). Evidence that TNF-TNFR1-TRADD-TRAF2- RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 10: 1385-1397. doi: 10.1038/ sj.onc.1209945
  • Kalliolias GD, Ivashkiv LB (2016). TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nature 1: 49-62. doi: 10.1038/nrrheum.2015.169
  • Legarda D, Justus SJ, Ang RL, Rikhi N, Li W et al. (2016). CYLD Proteolysis Protects Macrophages from TNF-Mediated Autonecroptosis Induced by LPS and Licensed by Type I IFN.Cell Reports, 11: 2449-2461. doi:10.1016/j.celrep.2016.05.032
  • Malynn BA, Ma A (2009). A20 takes on tumors: tumor suppression by an ubiquitin-editing enzyme. Journal of Experimenatal Mediicne 5: 977-980. doi:10.1084/jem.20090765
  • Micheau O, Tschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2: 181- 190. doi: 10.1016/s0092-8674(03)00521-x
  • Opipari Jr AW, Boguski MS, Dixit VM (1990). The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. The Journal of Biological Chemistry 25: 14705-14708.
  • Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama et al. (2001). A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insülin signaling through insulin receptor substrate-1. Proceedings of the National Academy of Sciences of the United States of America 8: 4640-4645. doi: 10.1073/pnas.051042298
  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM et al. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 6748: 782-785. doi: 10.1038/43466
  • Park SM, Yoon JM, Lee TH (2004). Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Letters 1-3: 151-156. doi: 10.1016/j.febslet.2004.04.021
  • Patel P, Naik MU, Golla K, Shaik NF, Naik UP (2019). Calciuminduced dissociation of CIB1 from ASK1 regulates agonistinduced activation of the p38 MAPK pathway in platelets. Biochemical Journal 19: 2835-2850. doi: 10.1042/BCJ20190410
  • Pincheira R, Castro AF, Ozes ON, Idumalla PS, Donner DB (2008). Type 1 TNF receptor forms a complex with and uses Jak2 and c-Src to selectively engage signaling pathways that regulate transcription factor activity. Journal of Immunology 2: 1288- 1298. doi: 10.4049/jimmunol.181.2.1288mmr.2018.9712
  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck IG, Fry MJ et al. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 6490: 527-532. doi: 10.1038/370527a0
  • Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995). The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 7: 1243-1252. doi: 10.1016/0092-8674(95)90149-3
  • Sabio G, Davis RJ (2014). TNF and signaling pathways. Seminars in Immunology 3: 237-245. doi: 10.1016/j.smim.2014.02.009
  • Sedger LM, McDermott MF (2014). TNF and TNF-receptors: frommediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Review 25: 453-472.
  • Shu H, Takeuchi BM, Goeddel DV (1996). The tumor necrosis factor receptor 2 signal transducers TRAF2, c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex. Proceedings of the National Academy of Sciences of the United States of America 1996. doi: 10.1073/pnas.93.24.13973
  • Steelman LS, Chappell WH, Abrams SL, Kempf CR, Long J et al. (2011). Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/ mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Impact Journal of Aging 3: 192-222. doi:10.18632/aging.100296
  • Tartaglia LA, Avres TM, Wong GH, Goeddel DV (1993). A novel domain within the 55 kd TNF receptor signals cell death Cell 5: 845-853. doi: 10.1016/0092-8674(93)904642
  • Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T (2009). Involvement of linear polyubiquitylation of NEMO in NFkappaB activation. Nature Cell Biology 2: 123-132. doi: 10.1038/ncb1821
  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A et al. (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 6950: 793-796. doi: 10.1038/ncb1821
  • Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K et al. (2008). c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. The Journal of Biological Chemistry 36: 24295- 24299. doi: 10.1074/jbc.C800128200
  • Verhelst K, Loo GV, Beyaert R (2014). A20: attractive without showing cleavage. EMBO Reports 7: 734-735. doi: 10.15252/ embr.201439014
  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J et al. (2001). TAK1 is a ubiquitin-dependent kinase of MKK, IKK. Nature 6844: 346-351. doi: 10.1038/35085597
  • Won M, Park KA, Byun HS, Sohn KC, Kim YR et al. (2020). Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation. Cell Death & Differentiation. 12: 1830-1841. doi:10.1038/cdd.2010.47
  • Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J et al. (2006). Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Molecular and Cellular Biology 9: 3505-3513. doi: 10.1128/MCB.26.9.3505-3513.2006
  • Zou J, Lei T, Guo P, Yu J, Xu Q et al. (2019). Mechanisms shaping the role of ERK1/2 in cellular senescence. Molecular Medicine Reports, 2: 759-770. doi: 10.3892/mmr.2018.9712