Expression of β-(1,3-1,4)-glucanase gene of Orpinomyces sp. GMLF18 in Escherichia coli EC1000 and Lactococcus lactis subsp. cremoris MG1363

β-(1,3-1,4)-Glukanaz (licA) kodlayan bir gen Orpinomyces sp. GMLF18’den izole edilmiş ve Escherichia coli’de klonlanmıştır. licA’nın DNA dizilimi, 707 bç uzunluğunda bir gen olduğunu ve 26 kDa moleküler büyüklüğünde olan glikozil hidrolaz 16 ailesine ait bir protein kodladığını göstermiştir. licA içeren transformant E. coli’de LicA enzim aktivitesinin büyük bir kısmının hücresel olduğu bulunmuş ve LicA’nın pH 5,0-6,0 ve 40-50 °C arasında en yüksek aktiviteye ulaştığı gözlenmiştir. Enzim 40 °C’de stabilitesini korurken, 50 °C’de 20 dk içerisinde aktivitesinin % 12’sini kaybetmiştir. licA stabil bir rekombinant plazmit olan pIL253 yardımıyla fakültatif anaerob bakteri olan Lactococcus lactis subsp. cremoris MG1363’e aktarılmıştır. Enzim aktivitesi E. coli’ye göre düşük olsa da anaerobik fungus kaynaklı likenaz kodlayan bir gen L. lactis’de başarılı bir şekilde ifade edilmiştir

Orpinomyces sp. GMLF18’e ait β-(1,3-1,4)-glukanaz geninin Escherichia coli EC1000 ve Lactococcus lactis subsp. cremoris MG1363’de ekspresyonu

A gene encoding β-(1,3-1,4)-glucanase (licA) was amplifi ed from Orpinomyces sp. GMLF18 and expressed in Escherichia coli. Th e DNA sequence of licA showed that the gene was 707 bp and encoded a protein with a molecular mass of 26 kDa that belongs to family glycosyl hydrolase 16. Th e main LicA activity was observed to be cell-associated for the licA containing transformant E. coli, and the enzyme expressed in E. coli showed the highest activity at pH 5.0-6.0 and at temperatures of 40-50 °C. Th e enzyme was found to be stable at 40 °C; however, 12% of LicA activity was lost at 50 °C in 20 min. Th e licA was then introduced into the facultative anaerobic bacterium Lactococcus lactis subsp. cremoris MG1363 by a stable recombinant plasmid, pIL253. Although the enzymatic activity was lower than that in E. coli, the gene encoding the fungal originated lichenase was successfully expressed in L. lactis.

___

  • 1. Demirbas A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem 90: 773-777, 2005.
  • 2. Planas A. Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochim Biophys Acta 1543: 361-382,2000.
  • 3. Lloberas J, Perez-Pons JA, Querol E. Molecular cloning, expression and nucleotide sequence of the endo-β-1,3-1,4-Dglucanase gene from Bacillus licheniformis. Eur J Biochem 97: 337-343, 1991.
  • 4. Schimming S, Schwarz WH, Staudenbauer WL. Structure of the Clostridium thermocellum gene licB and the encoded β-1,3-1,4- glucanase: a catalytic region homologous to Bacillus lichenases joined to the reiterated domain of clostridial cellulases. Eur J Biochem 204: 13-19, 1992.
  • 5. Ekinci MS, McCrae SI, Flint HJ. Isolation and overexpression of a gene encoding an extracellular β-(1,3-1,4)-glucanase from Streptococcus bovis JB1. Appl Environ Microbiol 63: 3752- 3756, 1997.
  • 6. Saravanan R, Pavani Devi V, Shanmugam A et al. Isolation and partial purifi cation of extracellular enzyme (1,3)-β-D glucanase from Trichoderma reesei (3929). Biotech 6: 440-443, 2007.
  • 7. Chen H, Li XL, Ljungdahl LG. Sequencing of a 1,3-1,4-β-DGlucanase (Lichenase) from the anaerobic fungus Orpinomyces strain PC-2: Properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J Bacteriol 179: 6028-6034, 1997.
  • 8. Fric F, Huttova J. Glucanase, glucan synthase and chitinase activity in barley genotypes susceptible or resistant to Erysiphe graminis f.sp. hordei. Biologia Plantarum 35: 95-101, 1993.
  • 9. Genc H, Ozdemir M, Demirbas A. Analysis of mixed-linked (1-3),(1-4)-β-D-glucans in cereal grains from Turkey. Food Chem 73: 221-224, 2001.
  • 10. Annison G, Choct M. Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their eff ects. World Poultry Sci J 47: 232-242, 1991.
  • 11. Wang ZR, Qiao SY, Lu WQ et al. Eff ects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profi les in the hindgut of broilers fed wheat-based diets. Poult Sci 84: 875-881, 2005.
  • 12. Liu JR, Yu B, Liu FH et al. Expression of rumen microbial fi brolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol 71: 6769-6775, 2005.
  • 13. Wegmann U, O’connell-Motherway M, Zomer A et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 3256-3270, 2007.
  • 14. Çömlekcioğlu U, Akyol İ, Kar B et al. Anaerobik rumen funguslarının izolasyonu, tanımlanması ve kültür koleksiyonunun oluşturulması. Hayvansal Üretim 49: 29-35, 2008.
  • 15. Orpin CG. Studies on the rumen fl agellate Sphaeromonas communis. J Gen Microbiol 94: 270-280, 1976.
  • 16. Simon D, Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 20: 559-566, 1988.
  • 17. Leenhouts K, Buist G, Bolhuis A et al. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253: 217-224, 1996.
  • 18. Gasson MJ. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci aft er protoplast induced curing. J Bacteriol 154: 1-9, 1983.
  • 19. Th ompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specifi c gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680, 1994.
  • 20. Cantarel BL, Coutinho PM, Rancurel C et al. Th e Carbohydrate-Active EnZymesdatabase (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37 (Database issue): D233-D238, 2009.
  • 21. Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol 53: 159-162, 1970.
  • 22. Holo N, Nes F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55: 3119-3123, 1989.
  • 23. Miller GL. Use of dinitrosalicylic reagent for the determination of reducing sugars. Annal Chem 31: 426-428, 1959.
  • 24. Aygan A, Arıkan B. Production and characterization of multifunctional endoxylanase by Bacillus sp. X13. Turk J Biol 33: 231-237, 2009.
  • 25. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680- 685, 1970.
  • 26. Liu JR, Yu B, Zhao X et al. Coexpression of rumen microbial β-glucanase and xylanase genes in Lactobacillus reuteri. Appl Microbiol Biotechnol 77: 117-124, 2007.
  • 27. Weimer PJ. Cellulose degradation by ruminal microorganisms. Crit Rev Biotechnol 12: 189-223, 1992.
  • 28. Borneman WS, Hartley RD, Morrison WH et al. Feruloyl and p-coumaryl esterase from anaerobic fungi in relation to plant cell wall degradation. Appl Microbiol Biotechnol 33: 345-351,1990.
  • 29. Yanke LJ, Dong Y, McAllister TA et al. Comparison of amylolytic and proteolytic activities of ruminal fungi grown on cereal grains. Can J Microbiol 39: 817-820, 1993.
  • 30. McAllister TA, Dong Y, Yanke LJ et al. Cereal grain digestion by selected strains of ruminal fungi. Can J Microbiol 39: 367- 376, 1993.
  • 31. Williams AG, Orpin CG. Polysaccharide-degrading enzymes formed by three species of anaerobic rumen fungi on a range of carbohydrate substrates. Can J Microbiol 33: 418-426, 1987.
  • 32. Teather RM, Erfl e JD. DNA sequence of Fibrobacter succinogenes mixed-linkage β-glucanase (1,3-1,4-β-D-glucan 4-glucanohydrolase) gene. J Bacteriol 172: 3837-3841, 1990.
  • 33. Eberhardt RY, Gilbert HJ, Hazlewood GP. Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. Microbiology 2000; 146, 1999-2008.
  • 34. Lowe SE, Th eodorou MK, Trinci APJ. Cellulases and xylanases of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose and xylan. Appl Environ Microbiol 53: 1216-1223, 1987.
  • 35. Akyol I, Comlekcioglu U, Kar B et al. Cloning of a xylanase gene xyn2A from rumen fungus Neocallimastix sp. GMLF2 in Escherichia coli and its partial characterization. Biologia 64: 664-670, 2009.
  • 36. Kim SA, Cheng KJ, Liu JH. A variant of Orpinomyces joyonii 1,3-1,4-β-glucanase with increased thermal stability obtained by random mutagenesis and screening. Biosci Biotechnol Biochem 66: 171-174, 2002.
  • 37. Xue GP, Gobius KS, Orpin CG. A novel polysaccharide hydrolase cDNA (celD) from Neocallimastix patriciarum encoding three multi-functional catalytic domains with high endoglucanase, cellobiohydrolase and xylanase activities. J Gen Microbiol 138: 2397-2403, 1992.
  • 38. Li XL, Chen H, Ljungdahl LG. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulasehemicellulase complex. Appl Environ Microbiol 63: 4721- 4728, 1997.
  • 39. Qiu X, Selinger B, Yanke LJ et al. Isolation and analysis of two cellulase cDNAs from Orpinomyces joyonii. Gene 245: 119-126,2000.
  • 40. Ozkose E, Akyol I, Kar B et al. Expression of fungal cellulase gene in Lactococcus lactis strains to construct novel recombinant silage inoculants. Folia Microbiol 54: 335-342, 2009.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The interaction between renin-angiotensin system and sympathetic nervous system in the peripheral vasculature of normal Sprague-Dawley rats

Mohammed H. ABDULLA, - *, Munavvar A. SATTAR, Nor A. ABDULLAH

In vitro antagonistic activity of fungi isolated from sclerotia on potato tubers against Rhizoctonia solani

Erkol DEMİRCİ, Elif DANE, Cafer EKEN

Changes in the hemolymph total protein of Galleria mellonella (Lepidoptera: Pyralidae) after parasitism and envenomation by Pimpla turionellae (Hymenoptera: Ichneumonidae)

Olga SAK, Ekrem ERGİN, Fevzi UÇKAN, David B. RIVERS, Aylin ER

Expression of β-(1,3-1,4)-glucanase gene of Orpinomyces sp. GMLF18 in Escherichia coli EC1000 and Lactococcus lactis subsp. cremoris MG1363

Uğur ÇÖMLEKCİOĞLU, Emin ÖZKÖSE, İsmail AKYOL, Ferit Can YAZDIÇ, Mehmet Sait EKİNCİ

Phenolic constituents of Hypericum triquetrifolium Turra (Guttiferae) growing in Turkey: variation among populations and plant parts

Cüneyt ÇIRAK*, Jolita RADUSIENE, Valdimaras JANULIS, Liudas IVANAUSKAS, Necdet ÇAMAŞ

Influence of different sterilization methods on callus initiation and production of pigmented callus in Arnebia densiflora Ledeb.

Hatice ÇÖLGEÇEN, Ufuk KOCA, Gülnur TOKER

Numerical classification of streptomycetes isolated from karstic caves in Turkey

Mustafa YAMAÇ, Kamil IŞIK, Nevzat ŞAHİN

Biochemical identification and numerical taxonomy of Aeromonas spp. isolated from food samples in Turkey

Belgin ERDEM, Ergin KARİPTAŞ, Elif ÇİL, Kamil IŞIK

Infl uence of diff erent sterilization methods on callus initiation and production of pigmented callus in Arnebia densifl ora Ledeb

Hatice ÇÖLGEÇEN, Ufuk KOCA, Gülnur TOKER

Effects of cold and salicylic acid treatments on nitrate reductase activity in spinach leaves

Belinda AYDIN, Barbaros NALBANTOĞLU