Effect of experimental diabetes mellitus on plasma lactate deydrogenase and glutamic oxaloacetic transaminase levels in rabbits

Bu çalışmada, diabet 20 erkek, beyaz, Yeni Zelanda ırkı tavşan (Oryctolagus cuniculus huxley) alloxan verilerek (100 mg/kg vucut i.v.) oluşturuldu ve insulin tedavisi yapılmaksızın 16 hafta bekletildi. Plazma enzimlerini ölçümü için kan örnekleri hem diabetik hemde kontrol grublarından alındı. Muameleden sonra laktat dehidrogenaz (LDH) ve glutamik oksalasetik transaminaz (GOT) seviyeleri belirlendi. LDH ve GOT seviyeleri sırasıyla, kontrol grubunda 155,6 ± 41,9 U/L ve 47,0 ± 20,4 U/L iken, diabetli grubunda 286,9 ± 142,9 U/L ve 93,9 ± 62,5 U/L idi. Yapılan istatistiki analiz sonucu, diabetli, plazma LDH değerinin önemli oranda (p < 0,05) yükseldiği ancak GOT yüksekliğinin önemsiz olduğu (p > 0,05) görüldü. Sonuç olarak, LDH diabetes mellitus için bir indikatör olabilirler ancak, diabetes mellitus’un mevcut karakteristik paremetreleri daha iyi birer indikatördürler.

Tavşanlarda deneysel diyabetin plazma laktat dehidrogenaz ve glutamik oksalasetik transaminaz enzim düzeylerine etkisi

Hyperglycemia was induced in 20 male, white, New Zealand rabbits (2-3 kg) (Oryctolagus cuniculus huxley) by alloxan (100 mg/kg body weight, I.V.) and maintained for 16 weeks without insulin treatment. Blood samples were taken from both diabetic and non-diabetic rabbits at the same time for measurement of plasma enzymes. Levels of glutamic oxalacetic transaminase (GOT) and lactate dehydrogenase (LDH) were determined after treatment. The levels of LDH and GOT were 155.6 $pm$ 41.9 U/L and 47.0 $pm$ 20.4 U/L in the control group respectively. These parameters were 286.9 $pm$ 142.9 U/L and 93.9 $pm$62.5 U/L in the diabetic group respectively. It was observed that LDH (p < 0.05) was significantly increased, whereas GOT was not significantly increased (p > 0.05) in the diabetic group. In conclusion, we agree that routine use of LDH measurement to monitor diabetic status may be useful, but the characteristic parameters of diabetes mellitus are better indicators.

___

  • 1. Stewart, M. Animal Physiology, Kent UK, 1991, Holder and Stough Ltd., 313-7.
  • 2. Leninger, A.L. Principles of Biochemistry, New York, 1982, Worth Publishers Inc., 712-14.
  • 3. Oliver, R.C., Tervonen, T., Flynn, D.G., Keenan, K.M. Enzyme activity in crevicular fluid in relation to metabolic control of diabetes and other periodontal risk factors. J. Periodontal. 91(5): 423-6, 1993.
  • 4. Rossi, I., Sanchez-Arias, J.A., Feliu, J.E. Effect of streptozotocin diabetes on glycolytic flux and on fructose 2,6 biphosphate level in isolated rat enterocytes. Metabolism, 39(8): 882-5, 1990.
  • 5. Melinkeri, R.R., Sontakke, A.N., Kulkarni, A.M. Serum zinc and zinc containing enzymes in diabetes mellitus. Indian J. Med. Sci, 44(7): 173-7, 1990.
  • 6. Awaji, Y., Hastimoto, H., Matsui, Y., Kawaguchi, K., Okumura, K., Ito, T., Stake, T. Isoenzyme profiles of creatine kinase, lactate dehydrogenase and aspartate aminotransferase in diabetic heart: comparison with herditary and catecholamine cardiomyopathies. Cardivasc Res, 24(7): 547-54, 1990.
  • 7. Cai, F. Studies of enzymes histochemistry and ultrastructure of myocardium in rats with streptozotocin-induced diabetes. Zhonghua Yi Xue Za Zhi, 69(5): 276-8, 1989.
  • 8. Nikolaeva, L.F., Azmukhanbetova, A.Z., Titov, V.N., Perelygina, A.A. Value of determining serum enzyme activity during the exercise test in evaluating the functional condition of patients with ischemic heart disease and concomitant diabetes mellitus. Kardiologiia, 28(11): 85-90, 1988.
  • 9. Tanaka, T., Nanbara, S., Tanaka, T. Koide, H., Hayashi, T. Aminotransferase activity in liver of diabetic mice. Diabetes Res. Clin. Pract, 19: 71-5, 1988.
  • 10. Jones, R.G., Grant, P.G., Brown, D., Stickland, M., Wiles, P.G. A rise in the plasma activites of hepatic enzymes is not a common consequence of hypoglycaemia. Diabetes Med, 5(3): 253-5, 1988.
  • 11. Ryder, E., Campos, G., Morales-Villalobos, L.M. Enzymatic changes in polymorphonuclear cells isolated from type II diabetics. Biochem. Med. Metab. Biol, 37(2): 205-12, 1987.
  • 12. Margiavichene, L.E., Gribausckas, P.S., Norkus, A.V., Gribauskene R.A., Masalskene, V.V. Lipid metabolism and the activity of cardiospecific enzymes in diabetes mellitus. Probl. Endokrinol (Mosk), 32(5): 28-32, 1986.
  • 13. Cheshchevik A.B. Energy metabolism in the kidney cortex of rats with alloxan diabetes. Vopr. Med. Khim, 31(1): 52-54, 1985.
  • 14. Zappacosta, B., De Sole, P., Rossi, C., Marra, G., Ghirlanda, G., Giardina, B. Lactate dehydrogenase activiy of platelets in diabetes mellitus. Eur. J. Clin Chem. Biochem, 33 (8): 487-9, 1995.
  • 15. Fernandez-Alvarez, J., Conget, I., Rasschaert, J., Sener, A., Gomis, R., Malaisse W.J. Enzymatic, metabolic and secretory pattern in human islets of type II (non-insulin dependent) diabetic patient. Diabetologia, 37(2): 177-81, 1984.
  • 16. Piyachaturawat, P., Poprasit, J., Glinsukon, T. Gastric mucosal secretion and lesions by different doses of streptozotocin in rat. Toxicol Lett, 55(1): 21-9. 1991.
  • 17. Nanbara, S., Tanaka, K., Koide, H., Tanaka, T., Hayashi, T. Changes on levels of B6 vitamin and aminotransferase in the liver of diabetic animals. Diabetes Res. Clin. Pract., 9(2): 109-14, 1990.
  • 18. Rao, Gm., Morghom, L.O., Kabur, M.N., Ben Mohmud, Bm., Ashibani, K. Serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in diabetes mellitus. Indian J. Med. Sci., 43(5): 118-21, 1989.
  • 19. Henderson, J., Neithercut, W.D., Spooner, R.J., Frier, B.M. Glycemic control and raised alanine aminotransferase activity in treated diabetes mellitus. Clin. Biochem, 21(4): 245-7, 1988.
  • 20. Goldberg, D.M., Martin, J.V., Knight, A.H. Elevation of serum alkaline phosphate activity and related enzymes in diabetes mellitus, Clin. Biochem, 10(1): 8-11, 1977.
  • 21. Awadallah, R., El-Dessuokey, E.A. Serum enzyme changes in experimental diabetes before and after treatment with some hypoglycaemic drugs. Z Ernahrungswiss, 16(4): 235-40, 1977.