Analysis of the effects of hyperosmotic stress on the derepression of incertase activities and the growth of different baker's yeast strains

Saccharomyces cerevsiae'nın sukroz içeren ortamda üremesi için fazla miktarda hücre dışı invertaz enzim aktivitesi olması gerekir. Fakat, invertaz enziminin sentezi de çok sıkı bir şekilde glukoz baskılanması altındadır. Buna ek olarak, invertaz enzim aktivitesi S. cerevisiae'nın endüstriel üretimi ve üretim sonrası işlemleri sırasında bulunduğu ortamların fizyolojik stres şartlarından da etkilenmektedir. Bu çalışmada hiperosmotik stresin invertaz aktivitesi derepresyonuna etkileri S. cerevisiae'nın haploid laboratuar suşu ve üç farklı endüstriel S. cerevisiae suşu kullanılarak araştırıldı. Elde ettiğimiz sonuçlar hiperosmotik stresin mayadaki invertaz aktivitesinin derepresyonunu durdurduğunu gösterdi. Bu çalışmada kullanılan maya suşlarının invertaz aktivitelerinin üreme ortamında 1M NaCl veya 1M KCl bulunduğunda glukoz baskılanmasının olduğu miktarlarda kaldığı görüldü. Fakat düşük miktardaki NaCl'nin (0.2M) ortamda bulunması invertaz aktivitesini % 40-50 kadar arttırdı. Ayrıca, bu araştırmada kullanılan endüstriyel maya suşlarının laboratuar suşlarına göre osmotik strese karşı çok fazla duyarlı oldukları bulundu.

Farklı maya suşlarının üremelerine ve invertaz aktivitelerinin derepresyonuna hiperosmotik stresin etkilerinin analizi

The growth of baker's yeast Saccharomyces cerevisiae in medium containing sucrose requires a high level of extracellular invertase enzyme activity. However, the expression of invertase is under the strict control of glucose repression in S. cerevisiae. In addition, invertase enzyme activity is also affected by physiological stress conditions that baker's yeast is exposed to during the various stages of industrial level production and downstream processing. We analyzed the effect of hyperosmotic stress on the derepression of invertase activities of a haploid laboratory yeast strain and three different industrial baker's yeast strains. Our results indicated that hyperosmotic stress interferes with the derepression of invertase activity in the yeast. The invertase activities of the yeast strains remained essentially at a repressed level in the presence of 1M NaCl or 1M KCl in the growth medium. However, the presence of low amounts of NaCl in the growth medium (0.2M) increased the invertase activities of yeast st rains up to 40-50%. We also found that industrial yeast strains are more sensitive to hyperosmotic stress than the laboratory strains of S. cerevisiae used in this study

___

  • 1. Carlson, M. Regulation of glucose utilization in yeast. Curr. Opin. Genet. and Dev. 8: 560-564. 1998.
  • 2. Perlman, D., Raney, P., Halvorson, H. O. Cytoplasmic and secreted Saccharomyces cerevisiae invertase mRNAs encoded by one gene can be differentially or coordinately regulated. Mol. Cell. Biol. 9: 1682-1688. 1984.
  • 3. Herrero. P., Martinez-Campa, C., Moreno, F.. The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Letters. 434: 71-76. 1998.
  • 4. Lutfiyya, L.L., Johnston, M. Two Zinc-Finger-Containing repressors are responsible for glucose repression of SUC2 expression. Mol. Cell. Biol. 16: 4790-4797. 1996.
  • 5. Edmondson, D.G., Smith, M.M., Roth, S.Y. Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes and Dev. 10: 1247-1259. 1996.
  • 6. Sundarsanam, P., Cao Y., Wu L., Laurent, B.C., Winston, F. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5. EMBO J. 18: 3101-3106. 1999.
  • 7. Carlson, M., Botstein, D. Two differentially regulated mRNAs with different 5` ends encode secreted and intracellular forms of yeast invertase. Cell. 28: 145-154. 1982.
  • 8. DeVit, M.J., Johnson, M. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Current Biology. 9: 1231-1241. 1999.
  • 9. Randez-Gil F., Sanz, P., Entien, K.-D., Prieto, J.A. Carbon sourcedependent phosphorylation of hexokinase PII and its role in the glucose-signaling response in yeast. Mol. Cell. Biol. 18: 2940- 2948. 1998.
  • 10. Türkel, S. Effects of various physiological stresses on transcription of the SUC2 gene in the yeast Saccharomyces cerevisiae. Turk J. Biol. 24: 233-240. 2000.
  • 11. Saris, N., Makarow, M. Transient ER retention as stress response: conformational repair of heat damaged proteins to secretioncompetent structures. J. Cell Sciences. 111: 1575-1582. 1998.
  • 12. Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., Gustin M.C. An osmosensing signal transduction pathway in yeast. Science. 259: 1760-1763. 1993.
  • 13. Posas, F., Wurgler-Murphy, S.M., Maede, T., Witten, E.A., Thai, T.C., Saito, H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 twocomponent osmosensor. Cell. 86: 865-875. 1996.
  • 14. Rep, M., Krantz, M., Thevelein, J.M., Hohmann, S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. J. Biol. Chem. 275: 8290-8300. 2000.
  • 15. Blomberg, A. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Micro. Lett. 182: 1-8. 2000.
  • 16. Norbeck, J., Blomberg, A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl. J. Biol. Chem. 272: 5544-5554. 1997.
  • 17. Albertyn, J., Hohmann, S., Thevelein, J.M., Prior, B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Sacharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14: 4135-4144. 1994.
  • 18. Myers, D.K., Lawlor, D.T.M., Attfield, P.V. Influence of invertase activity and glycerol synthesis and retention on fermentation of media with a high sugar concentration by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63: 145-150. 1997.
  • 19. Codon, A.C., Benitez, T., Korhola, M. Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl. Microbiol. Biotechnol. 49: 154-163. 1998.
  • 20. Attfield, P.V. Stress tolerance: The key to the effective strains of industrial bakerÕs yeast. Nature Biotech. 15: 1351-1357. 1997.
  • 21. Hirasawa, R., Yokoigawa, K. Leavening ability of baker's yeast exposed to hyperosmotic media. FEMS Microbiol. Lett. 194: 159- 162. 2001.
  • 22. Bell, P.J.L., Higgins, V.J., Attfield, P.V. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett. Applied Microbiol. 32: 224-229. 2001.
  • 23. Celenza, J.L., Carlson, M. Cloning and genetic maping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 49-53. 1984.
  • 24. Rothe, C., Lehle, L. Sorting of invertase signal peptide mutants in yeast dependent and independent on the signal recognition particle. Eur. J. Biochem. 252: 16-24. 1998.
  • 25. Goldstein, A., Lampen, J.O. b-D-Fructofuranoside Fructohydrolase from yeast. Methods in Enzymol. 42c: 504-511. 1975.
  • 26. Van Wuytswinkel, O., Reiser, V., Siderius, M., Kelders, M.C., Ammerer, G., Ruis, H., Mager, W.H. Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Molecular Microbiol. 37: 382-397. 2000.
  • 27. Attfield, P.V., Kletsas, S. Hyperosmotic stress response by strains of bakerÕs yeast in high sugar concentration medium. Lett. Applied Microbiol. 31: 323-327. 2000.
  • 28. Türkel, S. Hyperosmotic stress represses the transcription of HXT2 and HXT4 genes in Saccharomyces cerevisiae. Folia Microbiol. 44: 372-376. 1999.